
µSpectre Documentation
Release v0.1

Till Junge

Jul 22, 2023

CONTENTS:

1 Summary 3

2 Tutorials 5
2.1 Getting Started . 5
2.2 Writing a New Constitutive Law . 7

3 Coding Convention 13
3.1 Objectives of the Convention . 16
3.2 Structure . 17
3.3 Documentation . 17
3.4 Testing . 19
3.5 C++ Coding Style and Convention . 19
3.6 Python Coding Style . 82
3.7 References . 82

4 Organisation of the Code 83
4.1 µGrid . 83

5 Constitutive Laws 95
5.1 Generic Linear Elastic Material . 95
5.2 CellSplit . 96
5.3 Laminate Material . 97

6 Testing Constitutive Laws 99
6.1 Python Usage Example . 99
6.2 C++ Usage Example . 100

7 Reference 101
7.1 LICENSE . 332

8 License 393
8.1 GNU LESSER GENERAL PUBLIC LICENSE . 393
8.2 GNU GENERAL PUBLIC LICENSE . 395

9 Indices and tables 405

Index 407

i

ii

µSpectre Documentation, Release v0.1

CONTENTS: 1

µSpectre Documentation, Release v0.1

2 CONTENTS:

CHAPTER

ONE

SUMMARY

Project µSpectre aims at providing an open-source platform for efficient FFT-based continuum mesoscale modelling.
It’s development is funded by the Swiss National Science Foundation within an Ambizione Project.

Computational continuum mesoscale modelling (or computational homogenisation) involves computing the overall
response of a periodic unit cell of material, a so-called representative volume element (RVE), to a given average (i.e.,
macroscale) strain. Typically, this is done using the finite-element method, even though it is neither able to leverage its
main strength, the trivial handling of complex geometries, nor otherwise particularly well suited for periodic problems.
An alternative method for modelling periodic RVE, developed by `Moulinec and Suquet`_, is based on the fast Fourier
transform (FFT). This method has evolved substantially over the last two decades, with particularly important and
currently underused improvements in the last two years, see Zeman et al, de Geus et al.

This new method for the solution of the core problem of computational homogenisation is significantly superior to
the FEM in terms of computational cost and memory footprint for most applications, but has not been exploited to its
full potential. One major obstacle to the wide adoption of the method is the lack of a robust, validated, open-source
code. Hence, researchers choose the well-known and tested FEM that has numerous commercial, open-source or legacy
in-house FEM codes.

The goal of this project is to develop µSpectre, an open-source platform for efficient FFT-based continuum mesoscale
modelling, which will overcome this obstacle. The project is designed to i) propose a de facto standard implementation
for the spectral RVE method that subsequent implementations can be compared to, in order to concentrate the devel-
opment effort of all interested parties in the field, ii) make µSpectre widely accessible for users by providing language
bindings for virtually all relevant popular computing platforms and comprehensive user’s manuals in order to help
widespread adoption, and, finally iv) make µSpectre eminently modifiable for developers by developing it in the open,
with a clean architecture and extensive developer’s documentation in order to maximise outside contributions.

Furthermore, this project places great importance on truly reproducible and verifiable science with a credible open
data strategy in the firm belief that these qualifiers help to reach and guarantee a high level of scientific quality, difficult
to reach otherwise, and to attract outside collaborations and contributions that help boost the scientific output beyond
what can be achieved by a single team.

H. Moulinec and P. Suquet. A numerical method for computing the overall response of nonlinear composites with
complex microstructure. Computer Methods in Applied Mechanics and Engineering, 157(1):69–94, 1998. doi:
10.1016/S0045-7825(97) 00218-1.

J. Zeman, T. W. J. de Geus, J. Vondřejc, R. H. J. Peerlings, and M. G. D. Geers. A finite element perspective on non-
linear FFT-based micromechanical simulations. International Journal for Numerical Methods in Engineering, 2017.
doi: 10.1002/nme.5481.

T.W.J. de Geus, J. Vondřejc, J. Zeman, R.H.J. Peerlings, M.G.D. Geers. Finite strain FFT-based non-linear solvers
made simple, Computer Methods in Applied Mechanics and Engineering (318, pp. 412-430), 2017

3

snf.ch
https://doi.org/10.1016/S0045-7825(97)00218-1
https://dx.doi.org/10.1002/nme.5481
https://doi.org/10.1016/j.cma.2016.12.032

µSpectre Documentation, Release v0.1

4 Chapter 1. Summary

CHAPTER

TWO

TUTORIALS

2.1 Getting Started

2.1.1 Obtaining µSpectre

µSpectre is hosted on a git repository on gitlab. To clone it, run

$ git clone https://gitlab.com/muspectre/muspectre.git

or if you prefer identifying yourself using a public ssh-key, run

$ git clone git@gitlab.com:muspectre/muspectre.git

The latter option requires you to have a user account on gitlab (create).

2.1.2 Building µSpectre

You can compile µSpectre using CMake (3.1.0 or higher). The current (and possibly incomplete list of) dependencies
are

• CMake (3.1.0 or higher)

• Boost unit test framework

• FFTW

• git

• Python3 including the header files.

• numpy and scipy.

Recommended:

• Sphinx and Breathe (necessary if you want to build the documentation (turned off by default)

• Eigen (3.3.0 or higher). If you do not install this, it will be downloaded automatically at configuration time, so
this is not strictly necessary. The download can be slow, though, so we recommend installing it on your system.

• The CMake curses graphical user interface (ccmake).

µSpectre requires a relatively modern compiler as it makes heavy use of C++14
features. It has successfully been compiled and tested using the following compilers under Linux

• gcc-7.2

• gcc-6.4

5

https://gitlab.com
https://gitlab.com/users/sign_in#register-pane
https://cmake.org/
https://cmake.org/
http://www.boost.org/doc/libs/1_66_0/libs/test/doc/html/index.html
http://www.fftw.org
https://git-scm.com/
https://www.python.org/
http://www.numpy.org/
https://scipy.org/
http://www.sphinx-doc.org
https://breathe.readthedocs.io
http://eigen.tuxfamily.org/

µSpectre Documentation, Release v0.1

• gcc-5.4

• clang-6.0

• clang-5.0

• clang-4.0

and using clang-4.0 under MacOS.

It does not compile on Intel’s most recent compiler, as it is still lacking some C++14 support. Work-arounds are
planned, but will have to wait for someone to pick up the task.

To compile, create a build folder and configure the CMake project. If you do this in the folder you cloned in the previous
step, it can look for instance like this:

$ mkdir build-release
$ cd build-release
$ ccmake ..

Then, set the build type to Release to produce optimised code. µSpectre makes heavy use of expression templates, so
optimisation is paramount. (As an example, the performance difference between code compiled in Debug and Release
is about a factor 40 in simple linear elasticity.)

Finally, compile the library and the tests by running

$ make -j <NB-OF-PROCESSES>

Warning: When using the -j option to compile, be aware that compiling µSpectre uses quite a bit of RAM. If
your machine start swapping at compile time, reduce the number of parallel compilations

2.1.3 Running µSpectre

The easiest and intended way of using µSpectre is through its Python bindings. The following simple example computes
the response of a two-dimensional stretched periodic RVE cell. The cell consist of a soft matrix with a circular hard
inclusion.

More examples both python and c++ executables can be found in the /bin folder.

2.1.4 Getting help

µSpectre is in a very early stage of development and the documentation is
currently spotty. Also, there is no FAQ page yet. If you run into trouble, please contact us by opening an issue
and someone will answer as soon as possible. You can also check the API Reference.

6 Chapter 2. Tutorials

https://gitlab.com/muspectre/muspectre/issues/1
https://gitlab.com/muspectre/muspectre/issues

µSpectre Documentation, Release v0.1

2.1.5 Reporting Bugs

If you think you found a bug, you are probably right. Please report it! The preferred way is for you to create a task
on µSpectre’s workboard and assign it to user junge. Include steps to reproduce the bug if possible. Someone will
answer as soon as possible.

2.1.6 Contribute

We welcome contributions both for new features and bug fixes. New features must be documented and have unit tests.
Please submit merge requests for review. More detailed guidelines for submissions will follow soon.

2.2 Writing a New Constitutive Law

The abstraction for a constitutive law in µSpectre** is the Material, and new such materials must inherit from the
class muSpectre::MaterialBase. Most often, however, it will be most convenient to inherit from the derived class
muSpectre::MaterialMuSpectre, as it implements a lot of the machinery that is commonly used by constitutive
laws. This section describes how to implement a new constitutive law with internal variables (sometimes also called
state variables). The example material implemented here is MaterialTutorial, an objective linear elastic law with
a distribution of eigenstrains as internal variables. The constitutive law is defined by the relationship between material
(or second Piola-Kirchhoff) stress S and Green-Lagrange strain E

S = C : (E− e) , (2.1)
𝑆𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 (𝐸𝑘𝑙 − 𝑒𝑘𝑙) , (2.2)

(2.3)

where C is the elastic stiffness tensor and e is the local eigenstrain. Note that the implementation sketched out here is
the most convenient to quickly get started with using µSpectre**, but not the most efficient one. For a most efficient
implementation, refer to the implementation of muSpectre::MaterialLinearElastic2.

2.2.1 The muSpectre::MaterialMuSpectre class

The class muSpectre::MaterialMuSpectre is defined in material_muSpectre_base.hh and takes three template
parameters;

1. class Material is a CRTP and names the material inheriting from it. The reason for this construction is that
we want to avoid virtual method calls from muSpectre::MaterialMuSpectre to its derived classes. Rather,
we want muSpectre::MaterialMuSpectre to be able to call methods of the inheriting class directly without
runtime overhead.

2. Dim_t DimS defines the number of spatial dimensions of the problem, i.e., whether we are dealing with a two-
or three-dimensional grid of pixels/voxels.

3. Dim_t DimM defines the number of dimensions of our material description. This value will typically be the same
as DimS, but in cases like generalised plane strain, we can for instance have a three three-dimensional material
response in a two-dimensional pixel grid.

The main job of muSpectre::MaterialMuSpectre is to

1. loop over all pixels to which this material has been assigned, transform the global gradient F (or small strain
tensor 𝜀) into the new material’s required strain measure (e.g., the Green-Lagrange strain tensor E),

2. for each pixel evaluate the constitutive law by calling its evaluate_stress (computes the stress response) or
evaluate_stress_tangent (computes both stress and consistent tangent) method with the local strain and
internal variables, and finally

2.2. Writing a New Constitutive Law 7

https://gitlab.com/muspectre/muspectre/boards
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

µSpectre Documentation, Release v0.1

3. transform the stress (and possibly tangent) response from the material’s stress measure into first Piola-Kirchhoff
stress P (or Cauchy stress 𝜎 in small strain).

In order to use these facilities, the new material needs to inherit from muSpectre::MaterialMuSpectre (where
we calculation of the response) and specialise the type muSpectre::MaterialMuSpectre_traits (where we tell
muSpectre::MaterialMuSpectre how to use the new material). These two steps are described here for our example
material.

Specialising the muSpectre::MaterialMuSpectre_traits structure ***
This structure is templated by the new material (in this case MaterialTutorial) and needs to specify

1. the types used to communicate per-pixel strains, stresses and stiffness tensors to the material (i.e., whether
you want to get maps to Eigen matrices or raw pointers, or . . .). Here we will use the convenient
muSpectre::MatrixFieldMap for strains and stresses, and muSpectre::T4MatrixFieldMap for the stiff-
ness. Look through the classes deriving from muSpectre::FieldMap for all available options.

2. the strain measure that is expected (e.g., gradient, Green-Lagrange strain, left Cauchy-Green strain, etc.). Here
we will use Green-Lagrange strain. The options are defined by the enum muSpectre::StrainMeasure.

3. the stress measure that is computed by the law (e.g., Cauchy, first Piola-Kirchhoff, etc,). Here, it will be first
Piola-Kirchhoff stress. The available options are defined by the enum muSpectre::StressMeasure.

Our traits look like this (assuming we are in the namespace muSpectre:

template <Dim_t DimS, Dim_t DimM>
struct MaterialMuSpectre_traits<MaterialTutorial<DimS, DimM>>
{
//! global field collection
using GFieldCollection_t = typename
GlobalFieldCollection<DimS, DimM>;

//! expected map type for strain fields
using StrainMap_t = MatrixFieldMap<GFieldCollection_t, Real, DimM, DimM, true>;
//! expected map type for stress fields
using StressMap_t = MatrixFieldMap<GFieldCollection_t, Real, DimM, DimM>;
//! expected map type for tangent stiffness fields
using TangentMap_t = T4MatrixFieldMap<GFieldCollection_t, Real, DimM>;

//! declare what type of strain measure your law takes as input
constexpr static auto strain_measure{StrainMeasure::GreenLagrange};
//! declare what type of stress measure your law yields as output
constexpr static auto stress_measure{StressMeasure::PK2};

//! local field_collections used for internals
using LFieldColl_t = LocalFieldCollection<DimS, DimM>;
//! local strain type
using LStrainMap_t = MatrixFieldMap<LFieldColl_t, Real, DimM, DimM, true>;
//! elasticity with eigenstrain
using InternalVariables = std::tuple<LStrainMap_t>;

};

8 Chapter 2. Tutorials

µSpectre Documentation, Release v0.1

2.2.2 Implementing the new material

The new law needs to implement the methods add_pixel, get_internals, evaluate_stress, and
evaluate_stress_tangent. Below is a commented example header:

template <Dim_t DimS, Dim_t DimM>
class MaterialTutorial:
public MaterialMuSpectre<MaterialTutorial<DimS, DimM>, DimS, DimM>

{
public:
//! traits of this material
using traits = MaterialMuSpectre_traits<MaterialTutorial>;

//! Type of container used for storing eigenstrain
using InternalVariables = typename traits::InternalVariables;

//! Construct by name, Young's modulus and Poisson's ratio
MaterialTutorial(std::string name, Real young, Real poisson);

/**
* evaluates second Piola-Kirchhoff stress given the Green-Lagrange
* strain (or Cauchy stress if called with a small strain tensor)
*/
template <class s_t, class eigen_s_t>
inline decltype(auto) evaluate_stress(s_t && E, eigen_s_t && E_eig);

/**
* evaluates both second Piola-Kirchhoff stress and stiffness given
* the Green-Lagrange strain (or Cauchy stress and stiffness if
* called with a small strain tensor)
*/
template <class s_t, class eigen_s_t>
inline decltype(auto)
evaluate_stress_tangent(s_t && E, eigen_s_t && E_eig);

/**
* return the internals tuple (needed by `muSpectre::MaterialMuSpectre`)
*/
InternalVariables & get_internals() {
return this->internal_variables;};

/**
* overload add_pixel to write into eigenstrain
*/
void add_pixel(const Ccoord_t<DimS> & pixel,

const Eigen::Matrix<Real, DimM, DimM> & E_eig);

protected:
//! stiffness tensor
T4Mat<Real, DimM> C;
//! storage for eigenstrain
using Field_t =
TensorField<LocalFieldCollection<DimS,DimM>, Real, secondOrder, DimM>;

(continues on next page)

2.2. Writing a New Constitutive Law 9

µSpectre Documentation, Release v0.1

(continued from previous page)

Field_t & eigen_field; //!< field of eigenstrains
//! tuple for iterable eigen_field
InternalVariables internal_variables;

private:
};

A possible implementation for the constructor would be:

template <Dim_t DimS, Dim_t DimM>
MaterialTutorial<DimS, DimM>::MaterialTutorial(std::string name,

Real young,
Real poisson)

:MaterialMuSpectre<MaterialTutorial, DimS, DimM>(name) {

// Lamé parameters
Real lambda{young*poisson/((1+poisson)*(1-2*poisson))};
Real mu{young/(2*(1+poisson))};

// Kronecker delta
Eigen::Matrix<Real, DimM, DimM> del{Eigen::Matrix<Real, DimM, DimM>::Identity()};

// fill the stiffness tensor
this->C.setZero();
for (Dim_t i = 0; i < DimM; ++i) {
for (Dim_t j = 0; j < DimM; ++j) {
for (Dim_t k = 0; k < DimM; ++k) {
for (Dim_t l = 0; l < DimM; ++l) {

get(this->C, i, j, k, l) += (lambda * del(i,j)*del(k,l) +
mu * (del(i,k)*del(j,l) + del(i,l)*del(j,k)));

}
}

}
}

}

as an exercise, you could check how muSpectre::MaterialLinearElastic1 uses µSpectre**’s materials toolbox
(in namespace MatTB) to compute C in a much more convenient fashion. The evaluation of the stress could be (here,
we make use of the Matrices namespace that defines common tensor algebra operations):

template <Dim_t DimS, Dim_t DimM>
template <class s_t, class eigen_s_t>
decltype(auto)
MaterialTutorial<DimS, DimM>::
evaluate_stress(s_t && E, eigen_s_t && E_eig) {
return Matrices::tens_mult(this->C, E-E_eig);

}

The remaining two methods are straight-forward:

template <Dim_t DimS, Dim_t DimM>
template <class s_t, class eigen_s_t>
decltype(auto)

(continues on next page)

10 Chapter 2. Tutorials

µSpectre Documentation, Release v0.1

(continued from previous page)

MaterialTutorial<DimS, DimM>::
evaluate_stress_tangent(s_t && E, eigen_s_t && E_eig) {
return return std::make_tuple

(evaluate_stress(E, E_eig),
this->C);

}

template <Dim_t DimS, Dim_t DimM>
InternalVariables &
MaterialTutorial<DimS, DimM>::get_internals() {
return this->internal_variables;

}

Note that the methods evaluate_stress and evaluate_stress_tangent need to be in the header, as both their
input parameter types and output type depend on the compile-time context.

2.2. Writing a New Constitutive Law 11

µSpectre Documentation, Release v0.1

12 Chapter 2. Tutorials

CHAPTER

THREE

CODING CONVENTION

• Objectives of the Convention

• Structure

• Documentation

• Testing

• C++ Coding Style and Convention

– Header Files

∗ Self-contained Headers

∗ The #define Guard

∗ Forward Declarations

∗ Inline Functions

∗ Names and Order of Includes

– Scoping

∗ Namespaces

∗ Unnamed Namespaces and Static Variables

∗ Nonmember, Static Member, and Global Functions

∗ Local Variables

∗ Static and Global Variables

∗ thread_local Variables

– Classes

∗ Doing Work in Constructors

∗ Implicit Conversions

∗ Copyable and Movable Types

∗ Structs vs. Classes

∗ Inheritance

∗ Multiple Inheritance

∗ Interfaces

13

µSpectre Documentation, Release v0.1

∗ Operator Overloading

∗ Access Control

∗ Declaration Order

– Functions

∗ Output Parameters

∗ Write Short Functions

∗ Reference Arguments

∗ Function Overloading

∗ Default Arguments

∗ Trailing Return Type Syntax

– Ownership and linting

∗ Ownership and Smart Pointers

∗ cpplint

– Other C++ Features

∗ Rvalue References

∗ Friends

∗ Exceptions

∗ noexcept

∗ Run-Time Type Information (RTTI)

∗ Casting

∗ Streams

∗ Preincrement and Predecrement

∗ Use of const

∗ Use of constexpr

∗ Integer Types

∗ Preprocessor Macros

∗ 0 and nullptr/NULL

∗ sizeof

∗ auto

∗ Braced Initialiser List

∗ Lambda expressions

∗ Template metaprogramming

∗ Boost

∗ C++14

∗ Nonstandard Extensions

14 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

∗ Aliases

– Naming

∗ General Naming Rules

∗ File Names

∗ Type Names

∗ Variable Names

· struct and class Data Members

∗ constexpr and const Names

∗ Function Names

∗ Namespace Names

∗ Enumerator Names

∗ Macro Names

∗ Exceptions to Naming Rules

– Comments

∗ Comment Style

∗ File Comments

∗ Class Comments

∗ Function Comments

· Function Declarations

· Function Definitions

∗ Variable Comments

· Class Data Members

· Global Variables

∗ Implementation Comments

· Line Comments

∗ Punctuation, Spelling and Grammar

∗ TODO Comments

∗ Deprecation Comments

– Formatting

∗ Line Length

∗ Non-ASCII Characters

∗ Spaces vs. Tabs

∗ Function Declarations and Definitions

∗ Lambda Expressions

∗ Function Calls

15

µSpectre Documentation, Release v0.1

∗ Braced Initialiser List Format

∗ Conditionals

∗ Loops and Switch Statements

∗ Pointer and Reference Expressions

∗ Boolean Expressions

∗ Return Values

∗ Variable and Array Initialisation

∗ Preprocessor Directives

∗ Class Format

∗ Constructor Initialiser Lists

∗ Namespace Formatting

∗ Horizontal Whitespace

· General

· Loops and Conditionals

· Operators

· Templates and Casts

∗ Vertical Whitespace

– Exceptions to the Rules

∗ Existing Non-conformant Code

∗ Windows Code

– Parting Words

• Python Coding Style

• References

3.1 Objectives of the Convention

µSpectre is a collaborative project and these coding conventions aim to make reading and understanding its
code as pain-free as possible, while ensuring the four main requirements of the library

1. Versatility

2. Efficiency

3. Reliability

4. Ease-of-use

Versatility requires that the core of the code, i.e., the data structures and fundamental algorithms be written in a generic
fashion. The genericity cannot come at the cost of the second requirement – Efficiency – which is the reason why
the material base classes make extensive use of template metaprogramming and expression templates. Reliability can
only be enforced through good unit testing with high test coverage, and ease-of-use relies on a good documentation for
developers and users alike.

16 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Review of submitted code is the main mechanism to enforce the coding conventions.

3.2 Structure

This section contains planned features that are not yet implemented, but that need to be considered during the devel-
opment effort.

The goal of this section is to define a maintainable and testable architecture for µSpectre. In order to achieve this, the
software is segmented in modules that perform one testable task each and are linked through well defined interfaces.
This way, when the implementation of a module changes, the other modules do not need to be adapted, as long as the
interfaces are respected. In the case of µSpectre, the central task is the evaluation of RVEs, referred to as the core library,
and there are the different language bindings, and the FEM plugins. This segmentation to obtain maintainability and
testability follows the Don’t repeat yourself! (DRY) principle stated as “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system” by Hunt (2000): Since all algorithms and procedures are
implemented only once and only in the core library, there is only one unit test per feature to implement and maintain.
Unit tests for the language bindings do not need to retest these features and test merely correct wrapping and proper
memory management. An exception to this rule are tests that are more convenient to implement in any of the bound
languages rather than in a C++ test (e.g. the FFT module is tested in python against numpy.fft as reference.

Figure 1 shows a schematic of the projected structure and identifies a chain of three modules, where each new module
depends on the previous one.

The first module contains only existing external (third-party) FFT implementations and is not part of the development
effort for this project. The block is listed for clarity since the choices made here determine the type of machines the
final code can run on.

The second module consists of i) the core library, which encapsulates the implementation of the spectral homogenisation
method and represents the major projected development and maintenance effort, as well as ii) a set of language bindings.
This second module allows single-scale RVE computations directly in most of the popular computing environments. It
furthermore allows to rapidly prototype a simulation in a convenient interactive environment such as Jupyter or Matlab,
and scale it up to a computing cluster when necessary using the same software.

The third and last module is a collection of plugins for multiple open-source and commercial FEM codes and provides
coupled concurrent multiscale computation capabilities in the spirit of FE2.

3.3 Documentation

There are two types of Documentation for µSpectre: on the one hand, there is this monograph which is supposed to
serve as reference manual to understand, and use the library and its extensions, and to look up APIs and data structures.
On the other hand, there is in-code documentation helping the developer to understand the role of functions, variables,
member (function)s and steps in algorithms.

The in-code documentation uses the syntax of the doxygen documentation generator, as its lightweight markup language
is very readable in the code and allows to generate the standalone API documentation in Reference.

All lengthier, text-based documentation is written for Sphinx in reStructuredText. This allows to write longer, more
expressive texts, such as this convention or the Tutorials.

3.2. Structure 17

https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.fft.html
http://www.stack.nl/~dimitri/doxygen/
http://www.sphinx-doc.org/en/master/index.html
http://docutils.sourceforge.net/rst.html

µSpectre Documentation, Release v0.1

Fig. 1: Figure 1: Principal modules of the platform. Boxes with dashed lines mark optional modules. External libraries
refer to established and well-tested existing third-party FFT implementations. The core library µSpectre represents the
main development objective of this project and will be written in modern C++14 and wrapped in language bindings for
Fortran, Python, and Matlab in order to be usable for single-scale computations by most researchers in their favourite
computing environment. Plugins for multiple open-source and commercial FEM codes will use either the core library
directly (Akantu, OOFEM), the Fortran language binding (ANSYS, Abaqus), or the Python language binding (FEniCS).

18 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

3.4 Testing

Every feature in µSpectre’s core library is supposed to be unit tested, and a missing test is considered a bug. Core
library features are unit tested in the C++ unit tests (preferred option) or the python unit tests (both within the tests
folder), because external contributors should not be expected to compile all the language bindings.

The unit tests typically use the Boost unit test framework to define C++ test cases and python’s unittest module for
python tests. If necessary, standalone tests can be added by contributors, provided that they are added as ctest targets
to the project’s main CMake file. See in the tests folder for examples regarding the tests.

3.5 C++ Coding Style and Convention

These are heavily inspired by the Google C++ Style Guide but are not compatible with it. These guidelines mostly
establish a common vocabulary to write common code and do not give advice for efficient programming practices. For
that, follow Scott Meyers book Effective Modern C++. As far as possible, the guidelines given in that book are also
enforced by the -Weffc++ compile flag.

The goals of this style guide are:

Style rules should pull their weight
The benefit of a style rule must be large enough to justify asking all of our engineers to remember it. The benefit
is measured relative to the code base we would get without the rule, so a rule against a very harmful practice
may still have a small benefit if people are unlikely to do it anyway. This principle mostly explains the rules we
don’t have, rather than the rules we do: for example, goto contravenes many of the following principles, but is
already vanishingly rare, so the Style Guide doesn’t discuss it.

Optimise for the reader, not the writer
Our core library (and most individual components submitted to it) is expected to continue for quite some time,
and we will hopefully attract more external contributors. As a result, more time will be spent reading most of
our code than writing it. We explicitly choose to optimise for the experience of our average contributor reading,
maintaining, and debugging code in our code base rather than ease when writing said code. “Leave a trace for the
reader” is a particularly common sub-point of this principle: When something surprising or unusual is happening
in a snippet of code (for example, use of raw pointers in the FFTEngine classes), leaving textual hints for the
reader at the point of use is valuable. Use explicit traces of ownership of objects on the heap using smart pointers
such as std::unique_ptr and std::shared_ptr.

Be consistent with existing code
Using one style consistently through our code base lets us focus on other (more important) issues. Consistency
also allows for automation: tools that format your code or adjust your #includes only work properly when your
code is consistent with the expectations of the tooling. In many cases, rules that are attributed to “Be Consistent”
boil down to “Just pick one and stop worrying about it”; the potential value of allowing flexibility on these points
is outweighed by the cost of having people argue over them.

Be consistent with the broader C++ community when appropriate
Consistency with the way other organisations use C++ has value for the same reasons as consistency within our
code base. If a feature in the C++ standard solves a problem, or if some idiom is widely known and accepted, that’s
an argument for using it. However, sometimes standard features and idioms are flawed, or were just designed
without our efficiency needs in mind. In those cases (as described below) it’s appropriate to constrain or ban
standard features.

Avoid surprising or dangerous constructs
C++ has features that are more surprising or dangerous than one might think at a glance. Some style guide
restrictions are in place to prevent falling into these pitfalls. There is a high bar for style guide waivers on such
restrictions, because waiving such rules often directly risks compromising program correctness.

3.4. Testing 19

http://www.boost.org/doc/libs/1_43_0/libs/test/doc/html/utf.html
https://docs.python.org/3/library/unittest.html
https://google.github.io/styleguide/cppguide.html

µSpectre Documentation, Release v0.1

Avoid constructs that our average C++ programmer would find tricky or hard to maintain in the constitutive
laws and solvers

C++ has features that may not be generally appropriate because of the complexity they introduce to the code. In
the core library, where we make heavy use of template metaprogramming and expression templates for efficiency,
it is totally fine to use trickier language constructs, because any benefits of more complex implementation are
multiplied widely by usage, and the cost in understanding the complexity does not need to be paid by the average
contributor who writes a new material or solver. When in doubt, waivers to rules of this type can be sought by
starting an issue.

Concede to optimisation when necessary
Performance is the overwhelming priority in the core library (i.e., data structures and low level algorithms that
the typical user relies on often, but rarely uses directly). If performance optimisation is in conflict with other
principles in this document, optimise.

3.5.1 Header Files

In general, every .cc file should have an associated .hh file. There are some common exceptions, such as unit tests
and small .cc files containing just a main() function (e.g., see in the bin folder).

Correct use of header files can make a huge difference to the readability, size and performance of your code.

The following rules will guide you through the various pitfalls of using header files.

Self-contained Headers

Header files should be self-contained (compile on their own) and end in .hh. There should not be any non-header files
that are meant for inclusion.

All header files should be self-contained. Users and refactoring tools should not have to adhere to special conditions
to include the header. Specifically, a header should have header guards and include all other headers it needs.

Prefer placing the definitions for inline functions in the same file as their declarations. The definitions of these constructs
must be included into every .cc file that uses them, or the program may fail to link in some build configurations. If
declarations and definitions are in different files, including the former should transitively include the latter. Do not
move these definitions to separately included header files (-inl.hh); this practice was common in the past, but is no
longer allowed.

As an exception, a template that is explicitly instantiated for all relevant sets of template arguments, or that is a private
implementation detail of a class, is allowed to be defined in the one and only .cc file that instantiates the template, see
material_linear_elastic1.cc for an example.

The #define Guard

All header files should have #define guards to prevent multiple inclusion. The format of the symbol name should be
CLASS_NAME_H (all caps with underscores), where ClassName (CamelCase) is the main class declared it the header
file.

Make sure to use unique file names to avoid triggering the wrong #define guard.

20 Chapter 3. Coding Convention

https://gitlab.com/muspectre/muspectre/issues

µSpectre Documentation, Release v0.1

Forward Declarations

Use forward declarations of µSpectre entities where it avoids includes and saves compile time.

A “forward declaration” is a declaration of a class, function, or template without an associated definition.

Pros:
• Forward declarations can save compile time, as #includes force the compiler to open more files and

process more input.

• Forward declarations can save on unnecessary recompilation. #includes can force your code to be recom-
piled more often, due to unrelated changes in the header.

Cons:
• Forward declarations can hide a dependency, allowing user code to skip necessary recompilation when

headers change.

• A forward declaration may be broken by subsequent changes to the library. Forward declarations of func-
tions and templates can prevent the header owners from making otherwise-compatible changes to their
APIs, such as widening a parameter type, adding a template parameter with a default value, or migrating
to a new namespace.

• Forward declaring symbols from namespace std:: yields undefined behaviour.

• It can be difficult to determine whether a forward declaration or a full #include is needed. Replacing an
#include with a forward declaration can silently change the meaning of code:

// b.hh:
struct B {};
struct D : B {};

// good_user.cc:
#include "b.hh"
void f(B*);
void f(void*);
void test(D* x) { f(x); } // calls f(B*)

If the #include was replaced with forward declarations for B and D, test() would call f(void*).

• Forward declaring multiple symbols from a header can be more verbose than simply #includeing the
header.

Try to avoid forward declarations of entities defined in another project.

Inline Functions

Use inline functions for performance-critical code. Also, templated member functions that that cannot be explicitly
instantiated need to be declared inline.

3.5. C++ Coding Style and Convention 21

µSpectre Documentation, Release v0.1

Names and Order of Includes

All of a project’s header files should be listed as descendants of the project’s source directory without use of UNIX
directory shortcuts . (the current directory) or .. (the parent directory). For example, muSpectre/src/common/
ccoord_operations.hh should be included as:

#include <libmugrid/ccoord_operations.hh>

Use the following order for includes to avoid hidden dependencies:
1. µSpectre headers

2. A blank line

3. Other libraries’ headers

4. A blank line

5. C++ system headers

With this ordering, if a µSpectre header omits any necessary includes, the build will break. Thus, this rule ensures that
build breaks show up first for the people working on these files, not for innocent people in different places.

You should include all the headers that define the symbols you rely upon, except in the case of forward declaration. If
you rely on symbols from bar.hh, don’t count on the fact that you included foo.hh which (currently) includes bar.
hh: include bar.hh yourself, unless foo.hh explicitly demonstrates its intent to provide you the symbols of bar.hh.
However, any includes present in the related header do not need to be included again in the related .cc (i.e., foo.cc
can rely on foo.hh’s includes).

3.5.2 Scoping

Namespaces

With few exceptions, place code in the namespace muSpectre. All other (subordinate) namespaces should have unique,
expressive names based on their purpose. Do not use using-directives (e.g. using namespace foo) within the core
library (but feel free to do so in the executables in the bin folder). Do not use inline namespaces. For unnamed
namespaces, see Unnamed Namespaces and Static Variables.

Definition:
Namespaces subdivide the global scope into distinct, named scopes, and so are useful for preventing name col-
lisions in the global scope.

Pros:
• Namespaces provide a method for preventing name conflicts in large programs while allowing most code

to use reasonably short names.

For example, if two different projects have a class Foo in the global scope, these symbols may collide
at compile time or at runtime. If each project places their code in a namespace, project1::Foo and
project2::Foo are now distinct symbols that do not collide, and code within each project’s namespace
can continue to refer to Foo without the prefix.

• Inline namespaces automatically place their names in the enclosing scope. Consider the following snippet,
for example:

namespace outer {
inline namespace inner {
void foo();

(continues on next page)

22 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

(continued from previous page)

} // namespace inner
} // namespace outer

The expressions outer::inner::foo() and outer::foo() are interchangeable. Inline namespaces are
primarily intended for ABI compatibility across versions.

Cons:
• Inline namespaces, in particular, can be confusing because names aren’t actually restricted to the namespace

where they are declared. They are only useful as part of some larger versioning policy.

• In some contexts, it’s necessary to repeatedly refer to symbols by their fully-qualified names. For deeply-
nested namespaces, this can add a lot of clutter.

Decision:
Namespaces should be used as follows:

• Follow the rules on Namespace Names.

• Terminate namespaces with comments as shown in the given examples.

• Namespaces wrap the entire source file after includes and forward declarations of classes from other names-
paces.

// In the .hh file
namespace mynamespace {

// All declarations are within the namespace scope.
// Notice the lack of indentation.
class MyClass {
public:
...
void Foo();

};

} // namespace mynamespace

// In the .cc file
namespace mynamespace {

// Definition of functions is within scope of the namespace.
void MyClass::Foo() {
...

}

} // namespace mynamespace

More complex .cc files might have additional details, using-declarations.

#include "a.h"

namespace mynamespace {

using ::foo::bar;

...code for mynamespace... // Code goes against the left margin.
(continues on next page)

3.5. C++ Coding Style and Convention 23

µSpectre Documentation, Release v0.1

(continued from previous page)

} // namespace mynamespace

• Do not declare anything in namespace std, including forward declarations of standard library classes.
Declaring entities in namespace std is undefined behaviour, i.e., not portable. To declare entities from the
standard library, include the appropriate header file.

• You may not use a using-directive to make all names from a namespace available (namespace clobbering).

// Forbidden -- This pollutes the namespace.
using namespace foo;

• Do not use namespace aliases at namespace scope in header files except in explicitly marked internal-only
namespaces, because anything imported into a namespace in a header file becomes part of the public API
exported by that file.

// Shorten access to some commonly used names in .cc files.
namespace baz = ::foo::bar::baz;

// Shorten access to some commonly used names (in a .h file).
namespace librarian {
namespace impl { // Internal, not part of the API.
namespace sidetable = ::pipeline_diagnostics::sidetable;

} // namespace impl

inline void my_inline_function() {
// namespace alias local to a function (or method).
namespace baz = ::foo::bar::baz;
...

}
} // namespace librarian

• Do not use inline namespaces.

Unnamed Namespaces and Static Variables

When definitions in a .cc file do not need to be referenced outside that file, place them in an unnamed namespace or
declare them static. Do not use either of these constructs in .hh files.

All declarations can be given internal linkage by placing them in unnamed namespaces. Functions and variables can
also be given internal linkage by declaring them static. This means that anything you’re declaring can’t be accessed from
another file. If a different file declares something with the same name, then the two entities are completely independent.

Use of internal linkage in .cc files is encouraged for all code that does not need to be referenced elsewhere. Do not
use internal linkage in .hh files.

Format unnamed namespaces like named namespaces. In the terminating comment, leave the namespace name empty:

namespace {
...

} // namespace

24 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Nonmember, Static Member, and Global Functions

Prefer placing nonmember functions in a namespace; use completely global functions rarely. Note: placing functions
in a namespace keeps them globally accessible, the goal of this is not to suppress the use of non-member functions but
rather to avoid polluting the global and muSpectre namespace by grouping them together in thematic namespaces,
see for instance the namespace MatTB in materials/materials_toolbox.cc. Do not use a class simply to group
static functions, unless they are function templates which need to be partially specialised. Otherwise, static methods
of a class should generally be closely related to instances of the class or the class’s static data.

Pros:
Nonmember and static member functions can be useful in some situations. Putting nonmember functions in a
namespace avoids polluting the global namespace.

Cons:
Nonmember and static member functions may make more sense as members of a new class, especially if they
access external resources or have significant dependencies.

Decision:
Sometimes it is useful to define a function not bound to a class instance. Such a function can be either a static
member or a nonmember function. Nonmember functions should not depend on external variables, and should
nearly always exist in a namespace. Do not create classes only to group static member functions, unless they
are function templates which need to be partially specialised; otherwise, this is no different than just giving the
function names a common prefix, and such grouping is usually unnecessary anyway.

If you define a nonmember function and it is only needed in its .cc file, use internal linkage to limit its scope.

Local Variables

Place a function’s variables in the narrowest scope possible, and initialise variables in the declaration.

C++ allows you to declare variables anywhere in a function. We encourage you to declare them in as local a scope as
possible, and as close to the first use as possible. This makes it easier for the reader to find the declaration and see what
type the variable is and what it was initialised to. In particular, initialisation should be used instead of declaration and
assignment, e.g.:

int i;
i = f(); // Bad -- initialisation separate from declaration.

int j{g()}; // Good -- declaration has initialisation.

std::vector<int> v;
v.push_back(1); // Prefer initialising using brace initialisation.
v.push_back(2);

std::vector<int> v = {1, 2}; // Good -- v starts initialised.

Prefer C++11-style universal initialisation (int i{0}) over legacy initialisation (int i = 0).

Variables needed for if, while and for statements should normally be declared within those statements, so that such
variables are confined to those scopes. E.g.:

for (size_t i{0}; i < DimS; ++i) {
...

}

There is one caveat: if the variable is an object, its constructor is invoked every time it enters scope and is created, and
its destructor is invoked every time it goes out of scope.

3.5. C++ Coding Style and Convention 25

µSpectre Documentation, Release v0.1

// Inefficient implementation:
for (int i = 0; i < 1000000; ++i) {
Foo f; // My ctor and dtor get called 1000000 times each.
f.do_something(i);

}

It may be more efficient to declare such a variable used in a loop outside that loop:

Foo f; // My ctor and dtor get called once each.
for (int i = 0; i < 1000000; ++i) {
f.do_something(i);

}

Static and Global Variables

Objects with static storage duration are forbidden unless they are trivially destructible. Informally this means that the
destructor does not do anything, even taking member and base destructors into account. More formally it means that
the type has no user-defined or virtual destructor and that all bases and non-static members are trivially destructible.
Static function-local variables may use dynamic initialisation. Use of dynamic initialisation for static class member
variables or variables at namespace scope is discouraged, but allowed in limited circumstances; see below for details.

As a rule of thumb: a global variable satisfies these requirements if its declaration, considered in isolation, could be
constexpr.

Definition:
Every object has a storage duration, which correlates with its lifetime. Objects with static storage duration live
from the point of their initialisation until the end of the program. Such objects appear as variables at namespace
scope (“global variables”), as static data members of classes, or as function-local variables that are declared
with the static specifier. Function-local static variables are initialised when control first passes through their
declaration; all other objects with static storage duration are initialised as part of program start-up. All objects
with static storage duration are destroyed at program exit (which happens before unjoined threads are terminated).

Initialisation may be dynamic, which means that something non-trivial happens during initialisation. (For example,
consider a constructor that allocates memory, or a variable that is initialised with the current process ID.) The other
kind of initialisation is static initialisation. The two aren’t quite opposites, though: static initialisation always happens
to objects with static storage duration (initialising the object either to a given constant or to a representation consisting
of all bytes set to zero), whereas dynamic initialisation happens after that, if required.

Pros:
Global and static variables are very useful for a large number of applications: named constants, auxiliary data
structures internal to some translation unit, command-line flags, logging, registration mechanisms, background
infrastructure, etc.

Cons:
Global and static variables that use dynamic initialisation or have non-trivial destructors create complexity that
can easily lead to hard-to-find bugs. Dynamic initialisation is not ordered across translation units, and neither
is destruction (except that destruction happens in reverse order of initialisation). When one initialisation refers
to another variable with static storage duration, it is possible that this causes an object to be accessed before its
lifetime has begun (or after its lifetime has ended). Moreover, when a program starts threads that are not joined
at exit, those threads may attempt to access objects after their lifetime has ended if their destructor has already
run.

Decision:
Decision on destruction

26 Chapter 3. Coding Convention

http://en.cppreference.com/w/cpp/language/storage_duration#Storage_duration
http://en.cppreference.com/w/cpp/types/is_destructible

µSpectre Documentation, Release v0.1

When destructors are trivial, their execution is not subject to ordering at all (they are effectively not “run”);
otherwise we are exposed to the risk of accessing objects after the end of their lifetime. Therefore, we only allow
objects with static storage duration if they are trivially destructible. Fundamental types (like pointers and int) are
trivially destructible, as are arrays of trivially destructible types. Note that variables marked with constexpr
are trivially destructible.

const int kNum{10}; // allowed

struct X { int n; };
const X kX[]{{1}, {2}, {3}}; // allowed

void foo() {
static const char* const kMessages[]{"hello", "world"}; // allowed

}

// allowed: constexpr guarantees trivial destructor
constexpr std::array<int, 3> kArray {{1, 2, 3}};

// bad: non-trivial destructor
const string kFoo("foo");

// bad for the same reason, even though kBar is a reference (the
// rule also applies to lifetime-extended temporary objects)
const string& kBar(StrCat("a", "b", "c"));

void bar() {
// bad: non-trivial destructor
static std::map<int, int> kData{{1, 0}, {2, 0}, {3, 0}};

}

Note that references are not objects, and thus they are not subject to the constraints on destructibility. The
constraint on dynamic initialisation still applies, though. In particular, a function-local static reference of the
form static T& t = *new T; is allowed.

Decision on initialisation

Initialisation is a more complex topic. This is because we must not only consider whether class constructors
execute, but we must also consider the evaluation of the initialiser:

int n{5}; // fine
int m{f()}; // ? (depends on f)
Foo x; // ? (depends on Foo::Foo)
Bar y{g()}; // ? (depends on g and on Bar::Bar)

All but the first statement expose us to indeterminate initialisation ordering.

The concept we are looking for is called constant initialisation in the formal language of the C++ standard. It
means that the initialising expression is a constant expression, and if the object is initialised by a constructor call,
then the constructor must be specified as constexpr, too:

struct Foo { constexpr Foo(int) {} };

int n{5}; // fine, 5 is a constant expression
Foo x(2); // fine, 2 is a constant expression and the chosen constructor is␣

(continues on next page)

3.5. C++ Coding Style and Convention 27

µSpectre Documentation, Release v0.1

(continued from previous page)

→˓constexpr
Foo a[] { Foo(1), Foo(2), Foo(3) }; // fine

Constant initialisation is always allowed. Constant initialisation of static storage duration variables should be
marked with constexpr. Any non-local static storage duration variable that is not so marked should be presumed
to have dynamic initialisation, and reviewed very carefully.

By contrast, the following initialisations are problematic:

time_t time(time_t*); // not ``constexpr``!
int f(); // not ``constexpr``!
struct Bar { Bar() {} };

time_t m{time(nullptr)}; // initialising expression not a constant expression
Foo y(f()); // ditto
Bar b; // chosen constructor Bar::Bar() not ``constexpr``

Dynamic initialisation of nonlocal variables is discouraged, and in general it is forbidden. However, we do
permit it if no aspect of the program depends on the sequencing of this initialisation with respect to all other
initialisations. Under those restrictions, the ordering of the initialisation does not make an observable difference.
For example:

int p{getpid()}; // allowed, as long as no other static variable
// uses p in its own initialisation

Dynamic initialisation of static local variables is allowed (and common).

Common patterns

• Global strings: if you require a global or static string constant, consider using a simple character array, or
a char pointer to the first element of a string literal. String literals have static storage duration already and
are usually sufficient.

• Maps, sets, and other dynamic containers: if you require a static, fixed collection, such as a set to search
against or a lookup table, you cannot use the dynamic containers from the standard library as a static
variable, since they have non-trivial destructors. Instead, consider a simple array of trivial types, e.g. an
array of arrays of int (for a “map from int to int”), or an array of pairs (e.g. pairs of int and const
char*). For small collections, linear search is entirely sufficient (and efficient, due to memory locality).
If necessary, keep the collection in sorted order and use a binary search algorithm. If you do really prefer
a dynamic container from the standard library, consider using a function-local static pointer, as described
below.

• Smart pointers (std::unique_ptr, std::shared_ptr): smart pointers execute cleanup during destruc-
tion and are therefore forbidden. Consider whether your use case fits into one of the other patterns described
in this section. One simple solution is to use a plain pointer to a dynamically allocated object and never
delete it (see last item).

• Static variables of custom types: if you require static, constant data of a type that you need to define
yourself, give the type a trivial destructor and a constexpr constructor.

• If all else fails, you can create an object dynamically and never delete it by binding the pointer to a function-
local static pointer variable: static const auto* const impl = new T(args...); (If the initiali-
sation is more complex, it can be moved into a function or lambda expression.)

28 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

thread_local Variables

thread_local variables that aren’t declared inside a function must be initialised with a true compile-time constant.
Prefer thread_local over other ways of defining thread-local data.

Definition:
Starting with C++11, variables can be declared with the thread_local specifier:

thread_local Foo foo{...};

Such a variable is actually a collection of objects, so that when different threads access it, they are actually
accessing different objects. thread_local variables are much like static storage duration variables in many
respects. For instance, they can be declared at namespace scope, inside functions, or as static class members, but
not as ordinary class members.

thread_local variable instances are initialised much like static variables, except that they must be initialised
separately for each thread, rather than once at program startup. This means that thread_local variables de-
clared within a function are safe, but other thread_local variables are subject to the same initialisation-order
issues as static variables (and more besides).

thread_local variable instances are destroyed when their thread terminates, so they do not have the destruction-
order issues of static variables.

Pros:

• Thread-local data is inherently safe from races (because only one thread can ordinarily access it), which makes
thread_local useful for concurrent programming.

• thread_local is the only standard-supported way of creating thread-local data.

Cons:
• Accessing a thread_local variable may trigger execution of an unpredictable and uncontrollable amount

of other code.

• thread_local variables are effectively global variables, and have all the drawbacks of global variables
other than lack of thread-safety.

• The memory consumed by a thread_local variable scales with the number of running threads (in the
worst case), which can be quite large in a program.

• An ordinary class member cannot be thread_local.

• thread_local may not be as efficient as certain compiler intrinsics.

Decision:
thread_local variables inside a function have no safety concerns, so they can be used without restriction. Note
that you can use a function-scope thread_local to simulate a class- or namespace-scope thread_local by
defining a function or static method that exposes it:

Foo& MyThreadLocalFoo() {
thread_local Foo result{ComplicatedInitialisation()};
return result;

}

thread_local variables at class or namespace scope must be initialised with a true compile-time constant (i.e.
they must have no dynamic initialisation). To enforce this, thread_local variables at class or namespace scope
must be annotated with constexpr:

constexpr thread_local Foo foo = ...;

3.5. C++ Coding Style and Convention 29

µSpectre Documentation, Release v0.1

thread_local should be preferred over other mechanisms for defining thread-local data.

3.5.3 Classes

Classes are the fundamental unit of code in C++. Naturally, we use them extensively. This section lists the main dos
and don’ts you should follow when writing a class.

Doing Work in Constructors

Avoid virtual method calls in constructors, and avoid initialisation that can fail if you can’t signal an error.

Definition:
It is possible to perform arbitrary initialisation in the body of the constructor.

Pros:
• No need to worry about whether the class has been initialised or not.

• Objects that are fully initialised by constructor call can be const and may also be easier to use with standard
containers or algorithms.

Cons:
• If the work calls virtual functions, these calls will not get dispatched to the subclass implementations. Future

modification to your class can quietly introduce this problem even if your class is not currently subclassed,
causing much confusion.

• There is no easy way for constructors to signal errors, short of crashing the program (not always appropriate)
or using exceptions.

• If the work fails, we now have an object whose initialisation code failed, so it may be an unusual state
requiring a bool is_valid() state checking mechanism (or similar) which is easy to forget to call.

• You cannot take the address of a constructor, so whatever work is done in the constructor cannot easily be
handed off to, for example, another thread.

Decision:
Constructors should never call virtual functions. If appropriate for your code , terminating the program may be
an appropriate error handling response. Otherwise, consider a factory function or initialise() method as
described in TotW #42 . Avoid initialise() methods on objects with no other states that affect which public
methods may be called (semi-constructed objects of this form are particularly hard to work with correctly).

Implicit Conversions

Do not define implicit conversions. Use the explicit keyword for conversion operators and single-argument con-
structors.

Definition:
Implicit conversions allow an object of one type (called the source type) to be used where a different type (called
the destination type) is expected, such as when passing an int argument to a function that takes a double
parameter.

In addition to the implicit conversions defined by the language, users can define their own, by adding appropriate
members to the class definition of the source or destination type. An implicit conversion in the source type is
defined by a type conversion operator named after the destination type (e.g. operator bool()). An implicit
conversion in the destination type is defined by a constructor that can take the source type as its only argument
(or only argument with no default value).

30 Chapter 3. Coding Convention

https://abseil.io/tips/42

µSpectre Documentation, Release v0.1

The explicit keyword can be applied to a constructor or (since C++11) a conversion operator, to ensure that it
can only be used when the destination type is explicit at the point of use, e.g. with a cast. This applies not only
to implicit conversions, but to C++11’s list initialisation syntax:

class Foo {
explicit Foo(int x, double y);
...

};

void Func(Foo f);

Func({42, 3.14}); // Error

This kind of code isn’t technically an implicit conversion, but the language treats it as one as far as explicit is
concerned.

Pros:
• Implicit conversions can make a type more usable and expressive by eliminating the need to explicitly

name a type when it’s obvious.

• Implicit conversions can be a simpler alternative to overloading, such as when a single function with
a string_view parameter takes the place of separate overloads for string and const char*.

• List initialisation syntax is a concise and expressive way of initialising objects.

Cons:
• Implicit conversions can hide type-mismatch bugs, where the destination type does not match the user’s

expectation, or the user is unaware that any conversion will take place.

• Implicit conversions can make code harder to read, particularly in the presence of overloading, by
making it less obvious what code is actually getting called.

• Constructors that take a single argument may accidentally be usable as implicit type conversions, even
if they are not intended to do so.

• When a single-argument constructor is not marked explicit, there’s no reliable way to tell whether
it’s intended to define an implicit conversion, or the author simply forgot to mark it.

• It’s not always clear which type should provide the conversion, and if they both do, the code becomes
ambiguous.

• List initialisation can suffer from the same problems if the destination type is implicit, particularly if
the list has only a single element.

Decision:
Type conversion operators, and constructors that are callable with a single argument, must be marked
explicit in the class definition. As an exception, copy and move constructors should not be explicit,
since they do not perform type conversion. Implicit conversions can sometimes be necessary and appro-
priate for types that are designed to transparently wrap other types. In that case, raise an issue.

Constructors that cannot be called with a single argument may omit explicit. Constructors that take
a single std::initialiser_list parameter should also omit explicit, in order to support copy-
initialisation (e.g. MyType m{1, 2};).

3.5. C++ Coding Style and Convention 31

https://gitlab.com/muspectre/muspectre/issues

µSpectre Documentation, Release v0.1

Copyable and Movable Types

A class’s public API should make explicit whether the class is copyable, move-only, or neither copyable nor movable.
Support copying and/or moving if these operations are clear and meaningful for your type.

Definition:
A movable type is one that can be initialised and assigned from temporaries.

A copyable type is one that can be initialised or assigned from any other object of the same type (so is also movable
by definition), with the stipulation that the value of the source does not change. std::unique_ptr<int> is an
example of a movable but not copyable type (since the value of the source std::unique_ptr<int> must be
modified during assignment to the destination). int and string are examples of movable types that are also
copyable. (For int, the move and copy operations are the same; for string, there exists a move operation that
is less expensive than a copy.)

For user-defined types, the copy behaviour is defined by the copy constructor and the copy-assignment operator. Move
behaviour is defined by the move constructor and the move-assignment operator, if they exist, or by the copy constructor
and the copy-assignment operator otherwise.

The copy/move constructors can be implicitly invoked by the compiler in some situations, e.g. when passing objects
by value.

Pros:
Objects of copyable and movable types can be passed and returned by value, which makes APIs simpler, safer, and
more general. Unlike when passing objects by pointer or reference, there’s no risk of confusion over ownership,
lifetime, mutability, and similar issues, and no need to specify them in the contract. It also prevents non-local
interactions between the client and the implementation, which makes them easier to understand, maintain, and
optimise by the compiler. Further, such objects can be used with generic APIs that require pass-by-value, such
as most containers, and they allow for additional flexibility in e.g., type composition.

Copy/move constructors and assignment operators are usually easier to define correctly than alternatives like
clone(), copy_from() or swap(), because they can be generated by the compiler, either implicitly or with
= default. They are concise, and ensure that all data members are copied. Copy and move constructors are
also generally more efficient, because they don’t require heap allocation or separate initialisation and assignment
steps, and they’re eligible for optimisations such as copy elision.

Move operations allow the implicit and efficient transfer of resources out of rvalue objects. This allows a plainer
coding style in some cases.

Cons:
Some types do not need to be copyable, and providing copy operations for such types can be confusing, non-
sensical, or outright incorrect. Types representing singleton objects (Registerer), objects tied to a specific scope
(Cleanup), or closely coupled to object identity (Mutex) cannot be copied meaningfully. Copy operations for base
class types that are to be used polymorphically are hazardous, because use of them can lead to object slicing.
Defaulted or carelessly-implemented copy operations can be incorrect, and the resulting bugs can be confusing
and difficult to diagnose.

Copy constructors are invoked implicitly, which makes the invocation easy to miss. This may cause confusion
for programmers used to languages where pass-by-reference is conventional or mandatory. It may also encourage
excessive copying, which can cause performance problems.

Decision:
Every class’s public interface should make explicit which copy and move operations the class supports. This
should usually take the form of explicitly declaring and/or deleting the appropriate operations in the public
section of the declaration.

Specifically, a copyable class should explicitly declare the copy operations, a move-only class should explicitly
declare the move operations, and a non-copyable/movable class should explicitly delete the copy operations. Ex-
plicitly declaring or deleting all four copy/move operations is required. If you provide a copy or move assignment

32 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

operator, you must also provide the corresponding constructor.

class Copyable {
public:
//! Default constructor
Copyable() = delete;

//! Copy constructor
Copyable(const Copyable &other);

//! Move constructor
Copyable(Copyable &&other) = delete;

//! Destructor
virtual ~Copyable() noexcept;

//! Copy assignment operator
Copyable& operator=(const Copyable &other);

//! Move assignment operator
Copyable& operator=(Copyable &&other) = delete;

protected:
...

private:
...

};

class MoveOnly {
public:
//! Default constructor
MoveOnly() = delete;

//! Copy constructor
MoveOnly(const MoveOnly &other) = delete;

//! Move constructor
MoveOnly(MoveOnly &&other);

//! Destructor
virtual ~MoveOnly() noexcept;

//! Copy assignment operator
MoveOnly& operator=(const MoveOnly &other) = delete;

//! Move assignment operator
MoveOnly& operator=(MoveOnly &&other);

protected:
...

private:
...

(continues on next page)

3.5. C++ Coding Style and Convention 33

µSpectre Documentation, Release v0.1

(continued from previous page)

};

class NotCopyableNorMovable {
public:
//! Default constructor
NotCopyableNorMovable() = delete;

//! Copy constructor
NotCopyableNorMovable(const NotCopyableNorMovable &other) = delete;

//! Move constructor
NotCopyableNorMovable(NotCopyableNorMovable &&other);

//! Destructor
virtual ~NotCopyableNorMovable() noexcept;

//! Copy assignment operator
NotCopyableNorMovable& operator=(const NotCopyableNorMovable &other) = delete;

//! Move assignment operator
NotCopyableNorMovable& operator=(NotCopyableNorMovable &&other) = delete;

protected:
...

private:
...

};

These declarations/deletions can be omitted only if they are obvious: for example, if a base class isn’t copyable
or movable, derived classes naturally won’t be either. Similarly, a struct’s copyability/movability is normally
determined by the copyability/movability of its data members. Note that if you explicitly declare or delete any of
the copy/move operations, the others are not obvious, and so this paragraph does not apply (in particular, the rules
in this section that apply to classes also apply to structs that declare or delete any copy/move operations).

A type should not be copyable/movable if it incurs unexpected costs. Move operations for copyable types are
strictly a performance optimisation and are a potential source of bugs and complexity, so define them if they have
a chance of being more efficient than the corresponding copy operations. If your type provides copy operations,
it is recommended that you design your class so that the default implementation of those operations is correct.
Remember to review the correctness of any defaulted operations as you would any other code.

Structs vs. Classes

Use a struct only for passive objects that carry data or collections of templated static member functions that need to
be partially specialised; everything else is a class.

The struct and class keywords behave almost identically in C++. We add our own semantic meanings to each
keyword, so you should use the appropriate keyword for the data-type you’re defining.

structs should be used for passive objects that carry data, and may have associated constants, but lack any functionality
other than access/setting the data members. The accessing/setting of fields is done by directly accessing the fields rather
than through method invocations.

Methods should only be used in templated static method-only structs. See, e.g.:

34 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

//! static inline implementation of Hooke's law
template <Dim_t Dim, class Strain_t, class Tangent_t>
struct Hooke {
/**
* compute Lamé's first constant
* @param young: Young's modulus
* @param poisson: Poisson's ratio
*/
inline static constexpr Real
compute_lambda(const Real & young, const Real & poisson) {
return convert_elastic_modulus<ElasticModulus::lambda,

ElasticModulus::Young,
ElasticModulus::Poisson>(young, poisson);

}

/**
* compute Lamé's second constant (i.e., shear modulus)
* @param young: Young's modulus
* @param poisson: Poisson's ratio
*/
inline static constexpr Real
compute_mu(const Real & young, const Real & poisson) {
return convert_elastic_modulus<ElasticModulus::Shear,

ElasticModulus::Young,
ElasticModulus::Poisson>(young, poisson);

}

/**
* compute the bulk modulus
* @param young: Young's modulus
* @param poisson: Poisson's ratio
*/
inline static constexpr Real
compute_K(const Real & young, const Real & poisson) {
return convert_elastic_modulus<ElasticModulus::Bulk,

ElasticModulus::Young,
ElasticModulus::Poisson>(young, poisson);

}

/**
* compute the stiffness tensor
* @param lambda: Lamé's first constant
* @param mu: Lamé's second constant (i.e., shear modulus)
*/
inline static Eigen::TensorFixedSize<Real, Eigen::Sizes<Dim, Dim, Dim, Dim>>
compute_C(const Real & lambda, const Real & mu) {
return lambda*Tensors::outer<Dim>(Tensors::I2<Dim>(),Tensors::I2<Dim>()) +
2*mu*Tensors::I4S<Dim>();

}

/**
* compute the stiffness tensor
* @param lambda: Lamé's first constant

(continues on next page)

3.5. C++ Coding Style and Convention 35

µSpectre Documentation, Release v0.1

(continued from previous page)

* @param mu: Lamé's second constant (i.e., shear modulus)
*/
inline static T4Mat<Real, Dim>
compute_C_T4(const Real & lambda, const Real & mu) {
return lambda*Matrices::Itrac<Dim>() + 2*mu*Matrices::Isymm<Dim>();

}

/**
* return stress
* @param lambda: First Lamé's constant
* @param mu: Second Lamé's constant (i.e. shear modulus)
* @param E: Green-Lagrange or small strain tensor
*/
template <class s_t>
inline static decltype(auto)
evaluate_stress(const Real & lambda, const Real & mu, s_t && E) {
return E.trace()*lambda * Strain_t::Identity() + 2*mu*E;

}

/**
* return stress and tangent stiffness
* @param lambda: First Lamé's constant
* @param mu: Second Lamé's constant (i.e. shear modulus)
* @param E: Green-Lagrange or small strain tensor
* @param C: stiffness tensor (Piola-Kirchhoff 2 (or) w.r.t to `E`)
*/
template <class s_t>
inline static decltype(auto)
evaluate_stress(const Real & lambda, const Real & mu,

Tangent_t && C, s_t && E) {
return std::make_tuple
(std::move(evaluate_stress(lambda, mu, std::move(E))),
std::move(C));

}
};

The goal of such static member functions-only structs is to instantiate a set of function templates with consistent
template parameters without repeating those parameters.

If more functionality is required, a class is more appropriate. If in doubt, make it a class.

For consistency with STL, you can use struct instead of class for functors and traits.

Inheritance

Composition is often more appropriate than inheritance. When using inheritance, make it public.

Definition:
When a sub-class inherits from a base class, it includes the definitions of all the data and operations that the parent
base class defines. In practice, inheritance is used in two major ways in C++: implementation inheritance, in
which actual code is inherited by the child, and interface inheritance, in which only method names are inherited.

Pros:
Implementation inheritance reduces code size by re-using the base class code as it specializes an existing type.

36 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Because inheritance is a compile-time declaration, you and the compiler can understand the operation and detect
errors. Interface inheritance can be used to programmatically enforce that a class expose a particular API. Again,
the compiler can detect errors, in this case, when a class does not define a necessary method of the API.

Cons:
For implementation inheritance, because the code implementing a sub-class is spread between the base and the
sub-class, it can be more difficult to understand an implementation. The sub-class cannot override functions that
are not virtual, so the sub-class cannot change implementation.

Decision:
All inheritance should be public. If you want to do private inheritance, you should be including an instance of
the base class as a member instead.

Do not overuse implementation inheritance. Composition is often more appropriate. Try to restrict use of inher-
itance to the “is-a” case: Bar subclasses Foo if it can reasonably be said that Bar “is a kind of” Foo.

Limit the use of protected to those member functions that might need to be accessed from subclasses. Note that
data members should be private.

Explicitly annotate overrides of virtual functions or virtual destructors with exactly one of either the override
or (less frequently) override final specifier. Do not use virtual when declaring an override. Rationale:
A function or destructor marked override or final that is not an override of a base class virtual function
will not compile, and this helps catch common errors. The specifiers serve as documentation; if no specifier is
present, the reader has to check all ancestors of the class in question to determine if the function or destructor is
virtual or not.

Multiple Inheritance

Only very rarely is multiple implementation inheritance actually useful. We allow multiple inheritance only when at
most one of the base classes has an implementation; all other base classes must be pure interface classes.

Definition:
Multiple inheritance allows a sub-class to have more than one base class. We distinguish between base classes
that are pure interfaces and those that have an implementation.

Pros:
Multiple implementation inheritance may let you re-use even more code than single inheritance (see Inheritance).

Cons:
Only very rarely is multiple implementation inheritance actually useful. When multiple implementation inheri-
tance seems like the solution, you can usually find a different, more explicit, and cleaner solution.

Decision:
Multiple inheritance is allowed only when all superclasses, with the possible exception of the first one, are pure
interfaces.

Note:
There is an exception to this rule on Windows.

3.5. C++ Coding Style and Convention 37

µSpectre Documentation, Release v0.1

Interfaces

Definition:
A class is a pure interface if it meets the following requirements:

• It has only public pure virtual (= 0) methods and static methods (but see below for destructor).

• It may not have non-static data members.

• It need not have any constructors defined. If a constructor is provided, it must take no arguments and it
must be protected.

• If it is a subclass, it may only be derived from classes that satisfy these conditions.

An interface class can never be directly instantiated because of the pure virtual method(s) it declares. To make
sure all implementations of the interface can be destroyed correctly, the interface must also declare a virtual
destructor (in an exception to the first rule, this should not be pure). See Stroustrup, The C++ Programming
Language, 4th edition, 2014, section 20.3 for details.

Operator Overloading

Overload operators judiciously.

Definition:
C++ permits user code to declare overloaded versions of the built-in operators using the operator keyword, so
long as one of the parameters is a user-defined type. The operator keyword also permits user code to define
new kinds of literals using operator"", and to define type-conversion functions such as operator bool().

Pros:
Operator overloading can make code more concise and intuitive by enabling user-defined types to behave the same
as built-in types. Overloaded operators are the idiomatic names for certain operations (e.g. ==, <, =, and <<),
and adhering to those conventions can make user-defined types more readable and enable them to interoperate
with libraries that expect those names.

User-defined literals are a very concise notation for creating objects of user-defined types.

Cons:
• Providing a correct, consistent, and unsurprising set of operator overloads requires some care, and failure

to do so can lead to confusion and bugs.

• Overuse of operators can lead to obfuscated code, particularly if the overloaded operator’s semantics don’t
follow convention.

• The hazards of function overloading apply just as much to operator overloading, if not more so.

• Operator overloads can fool our intuition into thinking that expensive operations are cheap, built-in opera-
tions.

• Finding the call sites for overloaded operators may require a search tool that’s aware of C++ syntax, rather
than e.g. grep.

• If you get the argument type of an overloaded operator wrong, you may get a different overload rather than
a compiler error. For example, foo < bar may do one thing, while &foo < &bar does something totally
different.

• Certain operator overloads are inherently hazardous. Overloading unary & can cause the same code to have
different meanings depending on whether the overload declaration is visible. Overloads of &&, ||, and ,
(comma) cannot match the evaluation-order semantics of the built-in operators.

38 Chapter 3. Coding Convention

http://en.cppreference.com/w/cpp/language/operators

µSpectre Documentation, Release v0.1

• Operators are often defined outside the class, so there’s a risk of different files introducing different defi-
nitions of the same operator. If both definitions are linked into the same binary, this results in undefined
behavior, which can manifest as subtle run-time bugs.

• User-defined literals allow the creation of new syntactic forms that are unfamiliar even to experienced C++
programmers.

Decisions:
Define overloaded operators only if their meaning is obvious, unsurprising, and consistent with the corresponding
built-in operators. For example, use | as a bitwise- or logical-or, not as a shell-style pipe.

Define operators only on your own types. More precisely, define them in the same headers, .cc files, and names-
paces as the types they operate on. That way, the operators are available wherever the type is, minimising the
risk of multiple definitions. If possible, avoid defining operators as templates, because they must satisfy this
rule for any possible template arguments. If you define an operator, also define any related operators that make
sense, and make sure they are defined consistently. For example, if you overload <, overload all the comparison
operators, and make sure < and > never return true for the same arguments.

Prefer to define non-modifying binary operators as non-member functions. If a binary operator is defined as
a class member, implicit conversions will apply to the right-hand argument, but not the left-hand one. It will
confuse your users if a < b compiles but b < a doesn’t.

Don’t go out of your way to avoid defining operator overloads. For example, prefer to define ==, =, and <<, rather
than equals(), copy_from(), and print_to(). Conversely, don’t define operator overloads just because
other libraries expect them. For example, if your type doesn’t have a natural ordering, but you want to store it in
a std::set, use a custom comparator rather than overloading <.

Do not overload &&, ||, , (comma), or unary &.

Type conversion operators are covered in Implicit Conversions. The = operator is covered in Copyable and Movable
Types. Overloading << for use with streams is covered in Streams. See also the rules on function overloading, which
apply to operator overloading as well.

Access Control

Make data members protected, unless they are static const (and follow the naming convention for constants).

Declaration Order

Group similar declarations together, placing public parts earlier.

A class definition should usually start with a public: section, followed by protected:, then private:. Omit
sections that would be empty.

Within each section, generally prefer grouping similar kinds of declarations together, and generally prefer the following
order: types (including using, and nested structs and classes), constants, factory functions, constructors, assign-
ment operators, destructor, all other methods, data members.

Do not put large method definitions inline in the class definition. Trivial, performance-critical, or template methods
may be defined inline. See Inline Functions for more details.

3.5. C++ Coding Style and Convention 39

µSpectre Documentation, Release v0.1

3.5.4 Functions

Output Parameters

Prefer using return values rather than output parameters. If output-only parameters are used they should appear after
input parameters.

The output(s) of a C++ function is/are naturally provided via a (tuple of) return value and sometimes via output param-
eters.

Prefer using return values and return value tuples over output parameters since they improve readability and oftentimes
provide the same or better performance.

Parameters are either input to the function, output from the function, or both. Input parameters are usually values or
const references, while output and input/output parameters will be references to non-const.

When ordering function parameters, put all input-only parameters before any output parameters. In particular, do not
add new parameters to the end of the function just because they are new; place new input-only parameters before the
output parameters.

This is not a hard-and-fast rule. Parameters that are both input and output (often classes/structs) muddy the waters,
and, as always, consistency with related functions may require you to bend the rule.

Write Short Functions

Prefer small and focused functions.

We recognise that long functions are sometimes appropriate, so no hard limit is placed on functions length. If a function
exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program.

Even if your long function works perfectly now, someone modifying it in a few months may add new behaviour. This
could result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to
read and modify your code.

You could find long and complicated functions when working with some code. Do not be intimidated by modifying
existing code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want
to use a piece of it in several different contexts, consider breaking up the function into smaller and more manageable
pieces.

Reference Arguments

All input parameters passed by reference must be labelled const, Output and input/output parameters can be passed
as references, smart pointers, or std::optional. There are no raw pointers within µSpectre, ever.

Definition:
In C, if a function needs to modify a variable, the parameter must use a pointer, e.g., int foo(int *pval). In
C++, the function can alternatively declare a reference parameter: int foo(int &val).

Pros:
Defining a parameter as reference avoids ugly code like (*pval)++. Necessary for some applications like copy
constructors. Makes it clear, unlike with pointers, that a null pointer is not a possible value.

Cons:
References can be confusing to absolute beginners, as they have value syntax but pointer semantics.

Decision:
The one hard rule in µSpectre is that no raw pointers will be tolerated (with the obvious exception of interacting

40 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

with third-party APIs). Pointers are to be considered a bug-generating relic of a darker time when goto state-
ments were allowed to exist. If you need to mimic the questionable practice of passing a pointer that could be
nullptr to indicate that there is no value, use std::optional.

Function Overloading

Use overloaded functions (including constructors) only if a reader looking at a call site can get a good idea of what is
happening without having to first figure out exactly which overload is being called.

Definition:
You may write a function that takes a const string& and overload it with another that takes const char*.
However, in this case consider std::string_view instead.

class MyClass {
public:
void Analyze(const string &text);
void Analyze(const char *text, size_t textlen);

};

Pros:
Overloading can make code more intuitive by allowing an identically-named function to take different arguments.
It may be necessary for templated code, and it can be convenient for Visitors.

Cons:
If a function is overloaded by the argument types alone, a reader may have to understand C++’s complex matching
rules in order to tell what’s going on. Also many people are confused by the semantics of inheritance if a derived
class overrides only some of the variants of a function.

Decision:
You may overload a function when there are no semantic differences between variants, or when the differences
are clear at the call site.

If you are overloading a function to support variable number of arguments of the same type, consider making it
take a STL container so that the user can use an initialiser list to specify the arguments.

Default Arguments

Default arguments are allowed on non-virtual functions when the default is guaranteed to always have the same value.
Follow the same restrictions as for function overloading, and prefer overloaded functions if the readability gained with
default arguments doesn’t outweigh the downsides below.

Pros:
Often you have a function that uses default values, but occasionally you want to override the defaults. Default
parameters allow an easy way to do this without having to define many functions for the rare exceptions. Com-
pared to overloading the function, default arguments have a cleaner syntax, with less boilerplate and a clearer
distinction between ‘required’ and ‘optional’ arguments.

Cons:
Defaulted arguments are another way to achieve the semantics of overloaded functions, so all the reasons not to
overload functions apply.

The defaults for arguments in a virtual function call are determined by the static type of the target object, and
there’s no guarantee that all overrides of a given function declare the same defaults.

Default parameters are re-evaluated at each call site, which can bloat the generated code. Readers may also
expect the default’s value to be fixed at the declaration instead of varying at each call.

3.5. C++ Coding Style and Convention 41

µSpectre Documentation, Release v0.1

Function pointers are confusing in the presence of default arguments, since the function signature often doesn’t
match the call signature. Adding function overloads avoids these problems.

Decision:
Default arguments are banned on virtual functions, where they don’t work properly, and in cases where the
specified default might not evaluate to the same value depending on when it was evaluated. (For example, don’t
write void f(int n = counter++);.)

In some other cases, default arguments can improve the readability of their function declarations enough to
overcome the downsides above, so they are allowed.

Trailing Return Type Syntax

Use trailing return types only where using the ordinary syntax (leading return types) is impractical or much less read-
able.

Definition:
C++ allows two different forms of function declarations. In the older form, the return type appears before the
function name. For example:

int foo(int x);

The new form, introduced in C++11, uses the auto keyword before the function name and a trailing return type
after the argument list. For example, the declaration above could equivalently be written:

auto foo(int x) -> int;

The trailing return type is in the function’s scope. This doesn’t make a difference for a simple case like int but it
matters for more complicated cases, like types declared in class scope or types written in terms of the function
parameters.

Pros:
Trailing return types are the only way to explicitly specify the return type of a lambda expression. In some cases
the compiler is able to deduce a lambda’s return type, but not in all cases. Even when the compiler can deduce
it automatically, sometimes specifying it explicitly would be clearer for readers.

Sometimes it’s easier and more readable to specify a return type after the function’s parameter list has already
appeared. This is particularly true when the return type depends on template parameters. For example:

template <typename T, typename U>
auto add(T t, U u) -> decltype(t + u);

versus

template <typename T, typename U>
decltype(declval<T&>() + declval<U&>()) add(T t, U u);

Decision:
In most cases, continue to use the older style of function declaration where the return type goes before the function
name. Use the new trailing-return-type form only in cases where it’s required (such as lambdas) or where, by
putting the type after the function’s parameter list, it allows you to write the type in a much more readable way.

42 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

3.5.5 Ownership and linting

There are various tricks and utilities that we use to make C++ code more robust, and various ways we use C++ that
may differ from what you see elsewhere.

Ownership and Smart Pointers

Prefer to have single, fixed owners for dynamically allocated objects. Prefer to transfer ownership with smart pointers.

Definition:
“Ownership” is a bookkeeping technique for managing dynamically allocated memory (and other resources).
The owner of a dynamically allocated object is an object or function that is responsible for ensuring that it is
deleted when no longer needed. Ownership can sometimes be shared, in which case the last owner is typically
responsible for deleting it. Even when ownership is not shared, it can be transferred from one piece of code to
another.

“Smart” pointers are classes that act like pointers, e.g. by overloading the * and -> operators. Some
smart pointer types can be used to automate ownership bookkeeping, to ensure these responsibilities are met.
std::unique_ptr is a smart pointer type introduced in C++11, which expresses exclusive ownership of a dy-
namically allocated object; the object is deleted when the std::unique_ptr goes out of scope. It cannot be
copied, but can be moved to represent ownership transfer. std::shared_ptr is a smart pointer type that ex-
presses shared ownership of a dynamically allocated object. std::shared_ptrs can be copied; ownership of
the object is shared among all copies, and the object is deleted when the last std::shared_ptr is destroyed.

Pros:

• It’s virtually impossible to manage dynamically allocated memory without some sort of ownership logic.

• Transferring ownership of an object can be cheaper than copying it (if copying it is even possible).

• Transferring ownership can be simpler than ‘borrowing’ a pointer or reference, because it reduces the need to
coordinate the lifetime of the object between the two users.

• Smart pointers can improve readability by making ownership logic explicit, self-documenting, and unambiguous.

• Smart pointers can eliminate manual ownership bookkeeping, simplifying the code and ruling out large classes
of errors.

• For const objects, shared ownership can be a simple and efficient alternative to deep copying.

Cons:
• Ownership must be represented and transferred via smart pointers. Pointer semantics are more complicated

than value semantics, especially in APIs: you have to worry not just about ownership, but also aliasing,
lifetime, and mutability, among other issues.

• The performance costs of value semantics are often overestimated, so the performance benefits of ownership
transfer might not justify the readability and complexity costs.

• APIs that transfer ownership force their clients into a single memory management model.

• Code using smart pointers is less explicit about where the resource releases take place.

• Shared ownership can be a tempting alternative to careful ownership design, obfuscating the design of a
system.

• Shared ownership requires explicit bookkeeping at run-time, which can be costly.

• In some cases (e.g. cyclic references), objects with shared ownership may never be deleted.

3.5. C++ Coding Style and Convention 43

µSpectre Documentation, Release v0.1

Decision:
If dynamic allocation is necessary, prefer to keep ownership with the code that allocated it. If other code needs
momentary access to the object (i.e., there is no risk of the other code accessing it later, after the object may have
been destroyed), consider passing it a reference without transferring ownership. Prefer to use std::unique_ptr
to make ownership transfer explicit. For example:

std::unique_ptr<Foo> FooFactory();
void FooConsumer(std::unique_ptr<Foo> ptr);

Do not design your code to use shared ownership without a very good reason. One such reason is to avoid
expensive copy operations. If you do use shared ownership, prefer to use std::shared_ptr.

Never use std::auto_ptr it has no longer any value. Instead, use std::unique_ptr.

cpplint

Use cpplint.py to detect style errors.

cpplint.py is a tool that reads a source file and identifies many style errors. It is not perfect, and has both false
positives and false negatives, but it is still a valuable tool. False positives can be ignored by putting // NOLINT at the
end of the line or // NOLINTNEXTLINE in the previous line.

3.5.6 Other C++ Features

Rvalue References

Use rvalue references to define move constructors and move assignment operators, or for perfect forwarding.

Definition:
Rvalue references are a type of reference that can only bind to temporary objects. The syntax is similar to
traditional reference syntax. For example, void f(string&& s); declares a function whose argument is an
rvalue reference to a string.

Pros:
• Defining a move constructor (a constructor taking an rvalue reference to the class type) makes it possi-

ble to move a value instead of copying it. If v1 is a std::vector<string>, for example, then auto
v2(std::move(v1)) will probably just result in some simple pointer manipulation instead of copying a
large amount of data. In some cases this can result in a major performance improvement.

• Rvalue references make it possible to write a generic function wrapper that forwards its arguments to another
function, and works whether or not its arguments are temporary objects. (This is sometimes called “perfect
forwarding”.)

• Rvalue references make it possible to implement types that are movable but not copyable, which can be
useful for types that have no sensible definition of copying but where you might still want to pass them as
function arguments, put them in containers, etc.

• std::move is necessary to make effective use of some standard-library types, such as std::unique_ptr.

Decision:
Use rvalue references to define move constructors and move assignment operators (as described in Copyable
and Movable Types) and, in conjunction with std::forward, to support perfect forwarding. You may use
std::move to express moving a value from one object to another rather than copying it.

44 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Friends

We allow use of friend classes and functions, within reason.

Friends should usually be defined in the same file so that the reader does not have to look in another file to find uses of
the private members of a class. A common use of friend is to have a FooBuilder class be a friend of Foo so that it
can construct the inner state of Foo correctly, without exposing this state to the world.

Friends extend, but do not break, the encapsulation boundary of a class. In some cases this is better than making a
member public when you want to give only one other class access to it. However, most classes should interact with
other classes solely through their public members.

Exceptions

We use C++ exceptions extensively.

Pros:
• Exceptions allow higher levels of an application to decide how to handle “can’t happen” failures in deeply

nested functions, without the obscuring and error-prone bookkeeping of error codes.

• Exceptions are used by most other modern languages. Using them in C++ would make it more consistent
with Python, Java, and the C++ that others are familiar with.

• Some third-party C++ libraries use exceptions, and turning them off internally makes it harder to integrate
with those libraries.

• Exceptions are the only way for a constructor to fail. We can simulate this with a factory function or an
initialise() method, but these require heap allocation or a new “invalid” state, respectively.

• Exceptions are really handy in testing frameworks.

Cons:
• When you add a throw statement to an existing function, you must examine all of its transitive callers. Either

they must make at least the basic exception safety guarantee, or they must never catch the exception and be
happy with the program terminating as a result. For instance, if f() calls g() calls h(), and h throws an
exception that f catches, g has to be careful or it may not clean up properly.

• More generally, exceptions make the control flow of programs difficult to evaluate by looking at code:
functions may return in places you don’t expect. This causes maintainability and debugging difficulties.
You can minimise this cost via some rules on how and where exceptions can be used, but at the cost of
more that a developer needs to know and understand.

• Exception safety requires both RAII and different coding practices. Lots of supporting machinery is needed
to make writing correct exception-safe code easy. Further, to avoid requiring readers to understand the entire
call graph, exception-safe code must isolate logic that writes to persistent state into a “commit” phase. This
will have both benefits and costs (perhaps where you’re forced to obfuscate code to isolate the commit).
Allowing exceptions would force us to always pay those costs even when they’re not worth it.

• Turning on exceptions adds data to each binary produced, increasing compile time (probably slightly) and
possibly increasing address space pressure.

Decision: On their face, the benefits of using exceptions outweigh the costs, especially in new projects. Especially in
a computational project, were we are perfectly happy to terminate if an exception is thrown.

There is an exception to this rule (no pun intended) for Windows code.

3.5. C++ Coding Style and Convention 45

µSpectre Documentation, Release v0.1

noexcept

Specify noexcept when it is useful and correct.

Definition:
The noexcept specifier is used to specify whether a function will throw exceptions or not. If an exception
escapes from a function marked noexcept, the program crashes via std::terminate.

The noexcept operator performs a compile-time check that returns true if an expression is declared to not throw
any exceptions.

Pros:
• Specifying move constructors as noexcept improves performance in some cases, e.g.
std::vector<T>::resize() moves rather than copies the objects if T’s move constructor is noexcept.

• Specifying noexcept on a function can trigger compiler optimisations in environments where exceptions
are enabled, e.g. compiler does not have to generate extra code for stack-unwinding, if it knows that no
exceptions can be thrown due to a noexcept specifier.

Cons:
• It’s hard, if not impossible, to undo noexcept because it eliminates a guarantee that callers may be relying

on, in ways that are hard to detect.

Decision:
You should use noexcept when it is useful for performance if it accurately reflects the intended semantics of
your function, i.e. that if an exception is somehow thrown from within the function body then it represents a fatal
error. You can assume that noexcept on move constructors has a meaningful performance benefit. If you think
there is significant performance benefit from specifying noexcept on some other function, feel free to use it.

Run-Time Type Information (RTTI)

When possible, avoid using Run Time Type Information (RTTI).

Definition:
RTTI allows a programmer to query the C++ class of an object at run time. This is done by use of typeid or
dynamic_cast.

Cons:
Querying the type of an object at run-time frequently means a design problem. Needing to know the type of an
object at runtime is often an indication that the design of your class hierarchy is flawed.

Undisciplined use of RTTI makes code hard to maintain. It can lead to type-based decision trees or switch
statements scattered throughout the code, all of which must be examined when making further changes.

Pros:
RTTI can be very useful when interacting with duck-typed languages (like python) and when implementing
efficient containers with polymorphic interfaces, see, e.g., µSpectre’s FieldMap implementation.

RTTI can be useful in some unit tests. For example, it is useful in tests of factory classes where the test has to
verify that a newly created object has the expected dynamic type. It is also useful in managing the relationship
between objects and their mocks.

RTTI is useful when considering multiple abstract objects. Consider

bool Base::Equal(Base* other) = 0;
bool Derived::Equal(Base* other) {
Derived* that = dynamic_cast<Derived*>(other);
if (that == nullptr) {

(continues on next page)

46 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

(continued from previous page)

return false;
}
...

}

Decision:
RTTI has legitimate uses but is prone to abuse, so you must be careful when using it. You may use it freely in
unit tests, but avoid it when possible in other code. In particular, think twice before using RTTI in new code. If
you find yourself needing to write code that behaves differently based on the class of an object, consider one of
the following alternatives to querying the type:

• Virtual methods are the preferred way of executing different code paths depending on a specific subclass
type. This puts the work within the object itself.

• If the work belongs outside the object and instead in some processing code, consider a double-dispatch
solution, such as the Visitor design pattern. This allows a facility outside the object itself to determine the
type of class using the built-in type system.

When the logic of a program guarantees that a given instance of a base class is in fact an instance of a particular
derived class, then a dynamic_cast may be used freely on the object. Usually one can use a static_cast as
an alternative in such situations.

Decision trees based on type are a strong indication that your code is on the wrong track.

if (typeid(*data) == typeid(D1)) {
...
} else if (typeid(*data) == typeid(D2)) {
...

} else if (typeid(*data) == typeid(D3)) {
...

Code such as this usually breaks when additional subclasses are added to the class hierarchy. Moreover, when
properties of a subclass change, it is difficult to find and modify all the affected code segments.

Do not hand-implement an RTTI-like workaround. The arguments against RTTI apply just as much to
workarounds like class hierarchies with type tags. Moreover, workarounds disguise your true intent.

Casting

Use C++-style casts like static_cast<float>(double_value), or brace initialisation for conversion of arithmetic
types like int64 y{int64{1} << 42}. Do not use cast formats like int y{(int)x} or int y{int(x)} (but the
latter is okay when invoking a constructor of a class type).

Definition:
C++ introduced a different cast system from C that distinguishes the types of cast operations.

Pros:
The problem with C casts is the ambiguity of the operation; sometimes you are doing a conversion (e.g., (int)3.
5) and sometimes you are doing a cast (e.g., (int)"hello"). Brace initialisation and C++ casts can often help
avoid this ambiguity. Additionally, C++ casts are more visible when searching for them.

Cons:
The C++-style cast syntax is verbose

Decision:
Do not use C-style casts. Instead, use these C++-style casts when explicit type conversion is necessary.

3.5. C++ Coding Style and Convention 47

µSpectre Documentation, Release v0.1

• Use brace initialisation to convert arithmetic types (e.g. int64{x}). This is the safest approach because
code will not compile if conversion can result in information loss. The syntax is also concise.

• Use static_cast as the equivalent of a C-style cast that does value conversion, when you need to explicitly
up-cast a pointer from a class to its superclass, or when you need to explicitly cast a pointer from a superclass
to a subclass. In this last case, you must be sure your object is actually an instance of the subclass.

• Use const_cast to remove the const qualifier (see Use of const). This indicates a serious design flaw
if it happens in µSpectre and is to be considered a bug. Only use this if third-party libraries force you
to.

• Use reinterpret_cast to do unsafe conversions of pointer types to and from integer and other pointer
types. Use this only if you know what you are doing and you understand the aliasing issues.

See the RTTI section for guidance on the use of dynamic_cast.

Streams

Use streams where appropriate, and stick to “simple” usages. Overload << for streaming only for types representing
values, and write only the user-visible value, not any implementation details.

Definition:
Streams are the standard I/O abstraction in C++, as exemplified by the standard header <iostream>.

Pros:
The << and >> stream operators provide an API for formatted I/O that is easily learned, portable, reusable, and
extensible. printf, by contrast, doesn’t even support string, to say nothing of user-defined types, and is very
difficult to use portably. printf also obliges you to choose among the numerous slightly different versions of
that function, and navigate the dozens of conversion specifiers.

Streams provide first-class support for console I/O via std::cin, std::cout, std::cerr, and std::clog.
The C APIs do as well, but are hampered by the need to manually buffer the input.

Cons:
• Stream formatting can be configured by mutating the state of the stream. Such mutations are persistent, so

the behaviour of your code can be affected by the entire previous history of the stream, unless you go out
of your way to restore it to a known state every time other code might have touched it. User code can not
only modify the built-in state, it can add new state variables and behaviours through a registration system.

• It is difficult to precisely control stream output, due to the above issues, the way code and data are mixed
in streaming code, and the use of operator overloading (which may select a different overload than you
expect).

• The streams API is subtle and complex, so programmers must develop experience with it in order to use it
effectively.

• Resolving the many overloads of << is extremely costly for the compiler. When used pervasively in a large
code base, it can consume as much as 20% of the parsing and semantic analysis time.

Decision:
Use streams only when they are the best tool for the job. This is typically the case when the I/O is ad-hoc, local,
human-readable, and targeted at other developers rather than end-users. Be consistent with the code around
you, and with the code base as a whole; if there’s an established tool for your problem, use that tool instead. In
particular, logging libraries are usually a better choice than std::cerr or std::clog for diagnostic output.

Overload << as a streaming operator for your type only if your type represents a value, and <<writes out a human-
readable string representation of that value. Avoid exposing implementation details in the output of <<; if you
need to print object internals for debugging, use named functions instead (a method named debug_string() is
the most common convention).

48 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Preincrement and Predecrement

Use prefix form (++i) of the increment and decrement operators with iterators and other template objects.

Definition:
When a variable is incremented (++i or i++) or decremented (--i or i--) and the value of the expression is not
used, one must decide whether to pre-increment (decrement) or post-increment (decrement).

Pros:
When the return value is ignored, the “pre” form (++i) is never less efficient than the “post” form (i++), and is
often more efficient. This is because post-increment (or decrement) requires a copy of i to be made, which is
the value of the expression. If i is an iterator or other non-scalar type, copying i could be expensive. Since the
two types of increment behave the same when the value is ignored, why not just always pre-increment?

Cons:
The tradition developed, in C, of using post-increment when the expression value is not used, especially in for
loops. Some find post-increment easier to read, since the “subject” (i) precedes the “verb” (++), just like in
English. This is a dumb tradition and should be abolished.

Decision:
If the return value is ignored, a post-increment (post-decrement) is a bug.

Use of const

Use const doggedly whenever it makes is correct. With C++11, constexpr is a better choice for some uses of const.

Definition:
Declared variables and parameters can be preceded by the keyword const to indicate the variables are not
changed (e.g., const int foo). Class functions can have the const qualifier to indicate the function does not
change the state of the class member variables (e.g., class Foo { int Bar(char c) const; };).

Pros:
Easier for people to understand how variables are being used. Allows the compiler to do better type checking, and,
conceivably, generate better code. Helps people convince themselves of program correctness because they know
the functions they call are limited in how they can modify your variables. Helps people know what functions are
safe to use without locks in multi-threaded programs.

const is viral: if you pass a const variable to a function, that function must have const in its prototype.

Cons:
const can be problem when calling library functions, and require const_cast.

Decision:
const variables, data members, methods and arguments add a level of compile-time type checking; it is better to
detect errors as soon as possible. Therefore we strongly recommend that you use const whenever it is possible
to do so:

• If a function guarantees that it will not modify an argument passed by reference, the corresponding function
parameter should be a reference-to-const (const T&).

• Declare methods to be const whenever possible. Accessors should almost always be const. Other meth-
ods should be const if they do not modify any data members, do not call any non-const methods, and do
not return a non-const reference to a data member.

• Consider making data members const whenever they do not need to be modified after construction.

The mutable keyword is allowed but is unsafe when used with threads, so thread safety should be carefully considered
first.

3.5. C++ Coding Style and Convention 49

µSpectre Documentation, Release v0.1

Use of constexpr

In C++11, use constexpr to define true constants or to ensure constant initialisation.

Definition:
Some variables can be declared constexpr to indicate the variables are true constants, i.e. fixed at compila-
tion/link time. Some functions and constructors can be declared constexpr which enables them to be used in
defining a constexpr variable.

Pros:
Use of constexpr enables definition of constants with floating-point expressions rather than just literals; defi-
nition of constants of user-defined types; and definition of constants with function calls.

Decision:
constexpr definitions enable a more robust specification of the constant parts of an interface. Use constexpr
to specify true constants and the functions that support their definitions. You can use constexpr to force inlining
of functions.

Integer Types

We do not use the built-in C++ integer types in µSpectre, rather the alias Int. If a part needs a variable of a different
size, use a precise-width integer type from <cstdint>, such as int16_t. If your variable represents a value that could
ever be greater than or equal to 231 (2GiB), use a 64-bit type such as int64_t. Keep in mind that even if your value
won’t ever be too large for an Int, it may be used in intermediate calculations which may require a larger type. When
in doubt, choose a larger type.

Definition:
µSpectre does not specify the size of Int. Assume it’s 32 bits.

Pros:
Uniformity of declaration.

Cons:
The sizes of integral types in C++ can vary based on compiler and architecture.

Decision:
<cstdint> defines types like int16_t, uint32_t, int64_t, etc. You should always use those in preference to
short, unsigned long long and the like, when you need a guarantee on the size of an integer. When appropriate,
you are welcome to use standard types like size_t and petrify_t.

We use Int very often, for integers we know are not going to be too big, e.g., loop counters. Use plain old Int
for such things. You should assume that an Int is at least 32 bits, but don’t assume that it has more than 32 bits.
If you need a 64-bit integer type, use int64_t or uint64_t.

For integers we know can be “big”, use int64_t.

You should not use the unsigned integer types such as uint32_t, unless there is a valid reason such as represent-
ing a bit pattern rather than a number, or you need defined overflow modulo 2. In particular, do not use unsigned
types to say a number will never be negative. Instead, use assertions for this.

If your code is a container that returns a size, be sure to use a type that will accommodate any possible usage of
your container. When in doubt, use a larger type rather than a smaller type.

Use care when converting integer types. Integer conversions and promotions can cause undefined behaviour,
leading to security bugs and other problems.

On Unsigned Integers

Unsigned integers are good for representing bitfields and modular arithmetic. Because of historical accident, the C++
standard also uses unsigned integers to represent the size of containers - many members of the standards body believe

50 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

this to be a mistake, but it is effectively impossible to fix at this point. The fact that unsigned arithmetic doesn’t model
the behaviour of a simple integer, but is instead defined by the standard to model modular arithmetic (wrapping around
on overflow/underflow), means that a significant class of bugs cannot be diagnosed by the compiler. In other cases, the
defined behaviour impedes optimisation.

That said, mixing signedness of integer types is responsible for an equally large class of problems. The best advice
we can provide: try to use iterators and containers rather than pointers and sizes, try not to mix signedness, and try to
avoid unsigned types (except for representing bitfields or modular arithmetic). Do not use an unsigned type merely to
assert that a variable is non-negative.

Preprocessor Macros

Avoid defining macros, especially in headers; prefer inline functions, enums, and const variables. Do not use macros
to define pieces of a C++ API. Be aware that if you do not have a very good reason to submit code with a macro, it will
likely be rejected.

Macros mean that the code you see is not the same as the code the compiler sees. This can introduce unexpected
behaviour, especially since macros have global scope.

The problems introduced by macros are especially severe when they are used to define pieces of a C++ API, and still
more so for public APIs. Every error message from the compiler when developers incorrectly use that interface now
must explain how the macros formed the interface. Refactoring and analysis tools have a dramatically harder time
updating the interface. As a consequence, we specifically disallow using macros in this way. For example, avoid
patterns like:

class WOMBAT_TYPE(Foo) {
// ...

public:
EXPAND_PUBLIC_WOMBAT_API(Foo)

EXPAND_WOMBAT_COMPARISONS(Foo, ==, <)
};

Luckily, macros are not nearly as necessary in C++ as they are in C. Instead of using a macro to inline performance-
critical code, use an inline function. Instead of using a macro to store a constant, use a const or constexpr variable.
Instead of using a macro to “abbreviate” a long variable name, use a reference. Instead of using a macro to conditionally
compile code . . . well, don’t do that at all (except, of course, for the #define guards to prevent double inclusion of
header files, and packages such as MPI). It makes testing much more difficult.

Macros can do things these other techniques cannot, and you do see them in the code base, especially in the lower-
level libraries. And some of their special features (like stringifying, concatenation, and so forth) are not available
through the language proper. But before using a macro, consider carefully whether there’s a non-macro way to
achieve the same result. If you need to use a macro to define an interface, discuss it with the community in an is-
sue <https://gitlab.com/muspectre/muspectre/issues>>`_.

The following usage pattern will avoid many problems with macros; if you use macros, follow it whenever possible:

• Don’t define macros in a .hh file.

• #define macros right before you use them, and #undef them right after.

• Do not just #undef an existing macro before replacing it with your own; instead, pick a name that’s likely to be
unique.

• Try not to use macros that expand to unbalanced C++ constructs, or at least document that behaviour well.

• Prefer not using ## to generate function/class/variable names.

3.5. C++ Coding Style and Convention 51

µSpectre Documentation, Release v0.1

Exporting macros from headers (i.e. defining them in a header without #undefing them before the end of the header)
is extremely strongly discouraged. If you do export a macro from a header, it must have a globally unique name. To
achieve this, it must be named with a prefix consisting of your project’s namespace name (but upper case).

0 and nullptr/NULL

Use 0 for integers, 0. for reals, nullptr for pointers, and '\0' for chars.

For pointers (address values), there is a choice between 0, NULL, and nullptr. µSpectre only accepts nullptr, as this
provides type-safety.

Use '\0' for the null character. Using the correct type makes the code more readable.

sizeof

Prefer sizeof(varname) to sizeof(type).

Use sizeof(varname)when you take the size of a particular variable. sizeof(varname)will update appropriately if
someone changes the variable type either now or later. You may use sizeof(type) for code unrelated to any particular
variable, such as code that manages an external or internal data format where a variable of an appropriate C++ type is
not convenient.

Struct data;
memset(&data, 0, sizeof(data));

memset(&data, 0, sizeof(Struct));

if (raw_size < sizeof(int)) {
LOG(ERROR) << "compressed record not big enough for count: " << raw_size;
return false;

}

auto

Use auto to avoid type names that are noisy, obvious, or unimportant - cases where the type doesn’t aid in clarity for
the reader. Continue to use manifest type declarations only when it helps readability or you wish to override the type
(important in the context of expression templates, see Eigen C++11 and the auto keyword).

Pros:
• C++ type names can be long and cumbersome, especially when they involve templates or namespaces.

• Long type names hinder readability.

• When a C++ type name is repeated within a single declaration or a small code region, the repetition hinders
readability and breaks the DRY principle.

• It is sometimes safer to let the type be specified by the type of the initialisation expression, since that avoids
the possibility of unintended copies or type conversions.

• Allows the use of universal references auto && which allow to write efficient template expression code
without sacrificing readability.

Cons:
• Sometimes code is clearer when types are manifest, especially when a variable’s initialisation depends on

things that were declared far away. In expressions like:

52 Chapter 3. Coding Convention

http://eigen.tuxfamily.org/dox/TopicPitfalls.html

µSpectre Documentation, Release v0.1

auto foo = x.add_foo();
auto i = y.Find(key);

• it may not be obvious what the resulting types are if the type of y isn’t very well known, or if ywas declared
many lines earlier.

• Programmers have to understand the difference between auto and const auto& or they’ll get copies when
they didn’t mean to.

Decision:
auto is highly encouraged when it increases readability and reduces redundant code repetitions, particularly as
described below. Not using auto in these conditions is to be considered a bug. Never initialise an auto-typed
variable with a braced initialiser list.

Typical example cases where auto is appropriate:

• For iterators and other long/cluttery type names, particularly when the type is clear from context (calls to find,
begin, or end for instance).

• When the type is clear from local context (in the same expression or within a few lines). Initialisation of a pointer
or smart pointer with calls to new and std::make_unique commonly falls into this category, as does use of
auto in a range-based loop over a container whose type is spelled out nearby.

• When the type doesn’t matter because it isn’t being used for anything other than equality comparison.

• When iterating over a map with a range-based loop (because it is often assumed that the correct type
is std::pair<KeyType, ValueType> whereas it is actually std::pair<const KeyType, ValueType>).
This is particularly well paired with local key and value aliases for .first and .second (often const-ref).

for (const auto& item : some_map) {
const KeyType& key = item.first;
const ValType& value = item.second;
// The rest of the loop can now just refer to key and value,
// a reader can see the types in question, and we've avoided
// the too-common case of extra copies in this iteration.

}

Braced Initialiser List

You may use braced initialiser lists.

In C++03, aggregate types (arrays and structs with no constructor) could be initialised with braced initialiser lists.

struct Point { int x; int y; };
Point p = {1, 2};

In C++11, this syntax was generalised, and any object type can now be created with a braced initialiser list, known as
a braced-init-list in the C++ grammar. Here are a few examples of its use.

// Vector takes a braced-init-list of elements.
std::vector<string> v{"foo", "bar"};

// Basically the same, ignoring some small technicalities.
// You may choose to use either form.
std::vector<string> v = {"foo", "bar"};

(continues on next page)

3.5. C++ Coding Style and Convention 53

µSpectre Documentation, Release v0.1

(continued from previous page)

// Usable with 'new' expressions.
auto p = new std::vector<string>{"foo", "bar"};

// A map can take a list of pairs. Nested braced-init-lists work.
std::map<int, string> m = {{1, "one"}, {2, "2"}};

// A braced-init-list can be implicitly converted to a return type.
std::vector<int> test_function() { return {1, 2, 3}; }

// Iterate over a braced-init-list.
for (int i : {-1, -2, -3}) {}

// Call a function using a braced-init-list.
void TestFunction2(std::vector<int> v) {}
TestFunction2({1, 2, 3});

A user-defined type can also define a constructor and/or assignment operator that take std::initialiser_list<T>,
which is automatically created from braced-init-list:

class MyType {
public:
// std::initialiser_list references the underlying init list.
// It should be passed by value.
MyType(std::initialiser_list<int> init_list) {
for (int i : init_list) append(i);

}
MyType& operator=(std::initialiser_list<int> init_list) {
clear();
for (int i : init_list) append(i);

}
};
MyType m{2, 3, 5, 7};

Finally, brace initialisation can also call ordinary constructors of data types, even if they do not have
std::initialiser_list<T> constructors.

double d{1.23};
// Calls ordinary constructor as long as MyOtherType has no
// std::initialiser_list constructor.
class MyOtherType {
public:
explicit MyOtherType(string);
MyOtherType(int, string);

};
MyOtherType m = {1, "b"};
// If the constructor is explicit, you can't use the "= {}" form.
MyOtherType m{"b"};

Never assign a braced-init-list to an auto local variable. In the single element case, what this means can be confusing.

auto d = {1.23}; // d is a std::initialiser_list<double>

auto d = double{1.23}; // Good but weird -- d is a double, not a std::initialiser_list.

54 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

See Braced Initialiser List Format for formatting.

Lambda expressions

Use lambda expressions where appropriate. Use explicit captures.

Definition:
Lambda expressions are a concise way of creating anonymous function objects. They’re often useful when
passing functions as arguments. For example:

std::sort(v.begin(), v.end(), [](int x, int y) {
return Weight(x) < Weight(y);

});

They further allow capturing variables from the enclosing scope either explicitly by name, or implicitly using a
default capture. Explicit captures require each variable to be listed, as either a value or reference capture:

int weight{3};
int sum{0};
// Captures `weight` by value and `sum` by reference.
std::for_each(v.begin(), v.end(), [weight, &sum](int x) {
sum += weight * x;

});

Default captures implicitly capture any variable referenced in the lambda body, including this if any members
are used:

const std::vector<int> lookup_table = ...;
std::vector<int> indices = ...;
// Captures `lookup_table` by reference, sorts `indices` by the value
// of the associated element in `lookup_table`.
std::sort(indices.begin(), indices.end(), [&](int a, int b) {
return lookup_table[a] < lookup_table[b];

});

Lambdas were introduced in C++11 along with a set of utilities for working with function objects, such as the
polymorphic wrapper std::function.

Pros:
• Lambdas are much more concise than other ways of defining function objects to be passed to STL algo-

rithms, which can be a readability improvement.

• Appropriate use of default captures can remove redundancy and highlight important exceptions from the
default.

• Lambdas, std::function, and std::bind can be used in combination as a general purpose callback
mechanism; they make it easy to write functions that take bound functions as arguments.

Cons:
• Variable capture in lambdas can be a source of dangling-pointer bugs, particularly if a lambda escapes the

current scope.

• Default captures by value can be misleading because they do not prevent dangling-pointer bugs. Capturing
a pointer by value doesn’t cause a deep copy, so it often has the same lifetime issues as capture by reference.
This is especially confusing when capturing this by value, since the use of this is often implicit.

3.5. C++ Coding Style and Convention 55

µSpectre Documentation, Release v0.1

• It’s possible for use of lambdas to get out of hand; very long nested anonymous functions can make code
harder to understand.

Decision:
• Use lambda expressions where appropriate, with formatting as described below.

• Use explicit captures if the lambda may escape the current scope. For example, instead of:

{
Foo foo;
...
executor->schedule([&] { frobnicate(foo); })
...

}
// BAD! The fact that the lambda makes use of a reference to `foo` and
// possibly `this` (if `frobnicate` is a member function) may not be
// apparent on a cursory inspection. If the lambda is invoked after
// the function returns, that would be bad, because both `foo`
// and the enclosing object could have been destroyed.

prefer to write:

{
Foo foo;
...
executor->schedule([&foo] { frobnicate(foo); })
...

}
// BETTER - The compile will fail if `frobnicate` is a member
// function, and it's clearer that `foo` is dangerously captured by
// reference.

• Do not usese default capture by reference ([&]).

• Do not use default capture by value ([=]).

• Keep unnamed lambdas short. If a lambda body is more than maybe five lines long, prefer to give the
lambda a name, or to use a named function instead of a lambda.

• Specify the return type of the lambda explicitly if that will make it more obvious to readers, as with auto.

Template metaprogramming

Template metaprogramming is our tool to obtain both generic and efficient code. It can be complicated, but efficiency
is the top priority in the core of µSpectre.

Definition:
Template metaprogramming refers to a family of techniques that exploit the fact that the C++ template instanti-
ation mechanism is Turing complete and can be used to perform arbitrary compile-time computation in the type
domain.

Pros:
Template metaprogramming allows extremely flexible interfaces that are type safe and high performance. Facili-
ties like the Boost unit test framework, std::tuple, std::function, and Boost.Spiritwould be impossible
without it.

56 Chapter 3. Coding Convention

http://www.boost.org/doc/libs/1_43_0/libs/test/doc/html/utf.html

µSpectre Documentation, Release v0.1

Cons:
The techniques used in template metaprogramming are often obscure to anyone but language experts. Code that
uses templates in complicated ways is demanding to read, and is hard to debug.

Template metaprogramming often leads to extremely poor compiler time error messages: even if an interface is
simple, the complicated implementation details become visible when the user does something wrong.

Template metaprogramming interferes with large scale refactoring by making the job of refactoring tools harder.
First, the template code is expanded in multiple contexts, and it’s hard to verify that the transformation makes
sense in all of them. Second, some refactoring tools work with an AST that only represents the structure of the
code after template expansion. It can be difficult to automatically work back to the original source construct that
needs to be rewritten.

Decision:
Template metaprogramming sometimes allows cleaner and easier-to-use interfaces than would be possible with-
out it. It’s best used in a small number of low level components where the extra maintenance burden is spread
out over a large number of uses (i.e., the core of µSpectre, e.g. MaterialMuSpectre and the data structures).

If you use template metaprogramming, you should expect to put considerable effort into minimising and isolating the
complexity. You should hide metaprogramming as an implementation detail whenever possible, so that user-facing
headers are readable, and you should make sure that tricky code is especially well commented. You should carefully
document how the code is used, and you should say something about what the “generated” code looks like. Pay extra
attention to the error messages that the compiler emits when users make mistakes. The error messages are part of
your user interface, and your code should be tweaked as necessary so that the error messages are understandable and
actionable from a user point of view.

Boost

We try to depend on Boost as little as possible. The core library should not at all depend on Boost, while the tests
use the Boost unit test framework. There is one exception: For users with ancient compilers, Boost is used to emulate
std::optional. Do not add Boost dependencies.

Definition:
The Boost library collection is a popular collection of peer-reviewed, free, open-source C++ libraries.

Pros:
Boost code is generally very high-quality, is widely portable, and fills many important gaps in the C++ standard
library, such as type traits and better binders.

Cons:
Boost can be tricky to install on certain systems

C++14

Use libraries and language extensions from C++14 when appropriate.

C++14 contains significant improvements both to the language and libraries.

3.5. C++ Coding Style and Convention 57

http://www.boost.org/doc/libs/1_43_0/libs/test/doc/html/utf.html
https://www.boost.org/

µSpectre Documentation, Release v0.1

Nonstandard Extensions

Nonstandard extensions to C++ may not be used unless needed to fix compiler bugs.

Compilers support various extensions that are not part of standard C++. Such extensions include GCC’s
__attribute__.

Cons:
• Nonstandard extensions do not work in all compilers. Use of nonstandard extensions reduces portability of

code.

• Even if they are supported in all targeted compilers, the extensions are often not well-specified, and there
may be subtle behaviour differences between compilers.

• Nonstandard extensions add to the language features that a reader must know to understand the code.

Decision:
Do not use nonstandard extensions.

Aliases

Public aliases are for the benefit of an API’s user, and should be clearly documented.

Definition:
You can create names that are aliases of other entities:

template<class Param>
using Bar = Foo<Param>;
using other_namespace::Foo;

In µSpectre, aliases are created with the using keyword and never with typedef, because it provides a more
consistent syntax with the rest of C++ and works with templates.

Like other declarations, aliases declared in a header file are part of that header’s public API unless they’re in
a function definition, in the private portion of a class, or in an explicitly-marked internal namespace. Aliases
in such areas or in .cc files are implementation details (because client code can’t refer to them), and are not
restricted by this rule.

Pros:
• Aliases can improve readability by simplifying a long or complicated name.

• Aliases can reduce duplication by naming in one place a type used repeatedly in an API, which might make
it easier to change the type later.

Cons:
• When placed in a header where client code can refer to them, aliases increase the number of entities in that

header’s API, increasing its complexity.

• Clients can easily rely on unintended details of public aliases, making changes difficult.

• It can be tempting to create a public alias that is only intended for use in the implementation, without
considering its impact on the API, or on maintainability.

• Aliases can create risk of name collisions

• Aliases can reduce readability by giving a familiar construct an unfamiliar name

• Type aliases can create an unclear API contract: it is unclear whether the alias is guaranteed to be identical
to the type it aliases, to have the same API, or only to be usable in specified narrow ways

58 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Decision:
Don’t put an alias in your public API just to save typing in the implementation; do so only if you intend it to be
used by your clients.

When defining a public alias, document the intent of the new name. This lets the user know whether they can
treat the types as substitutable or whether more specific rules must be followed, and can help the implementation
retain some degree of freedom to change the alias.

Don’t put namespace aliases in your public API. (See also Namespaces).

For example, these aliases document how they are intended to be used in client code:

namespace mynamespace {
// Used to store field measurements. DataPoint may change from Bar* to some␣

→˓internal type.
// Client code should treat it as an opaque pointer.
using DataPoint = foo::Bar*;

// A set of measurements. Just an alias for user convenience.
using TimeSeries = std::unordered_set<DataPoint, std::hash<DataPoint>,␣

→˓DataPointComparator>;
} // namespace mynamespace

These aliases don’t document intended use, and half of them aren’t meant for client use:

namespace mynamespace {
// Bad: none of these say how they should be used.
using DataPoint = foo::Bar*;
using std::unordered_set; // Bad: just for local convenience
using std::hash; // Bad: just for local convenience
typedef unordered_set<DataPoint, hash<DataPoint>, DataPointComparator> TimeSeries;

} // namespace mynamespace

However, local convenience aliases are fine in function definitions, private sections of classes, explicitly marked
internal namespaces, and in .cc files:

// In a ``.cc`` file
using foo::Bar;

3.5.7 Naming

The most important consistency rules are those that govern naming. The style of a name immediately informs us what
sort of thing the named entity is: a type, a variable, a function, a constant, a macro, etc., without requiring us to search
for the declaration of that entity. The pattern-matching engine in our brains relies a great deal on these naming rules.

Naming rules are pretty arbitrary, but we feel that consistency is more important than individual preferences in this
area, so regardless of whether you find them sensible or not, the rules are the rules.

3.5. C++ Coding Style and Convention 59

µSpectre Documentation, Release v0.1

General Naming Rules

Names should be descriptive; avoid abbreviation.

Give as descriptive a name as possible, within reason. Do not worry about saving horizontal space as it is far more
important to make your code immediately understandable by a new reader. Do not use abbreviations that are ambiguous
or unfamiliar to readers outside your project, and do not abbreviate by deleting letters within a word. Abbreviations
that would be familiar to someone outside your project with relevant domain knowledge are OK. As a rule of thumb,
an abbreviation is probably OK if it’s listed in Wikipedia.

A few good examples:

int price_count_reader; // No abbreviation.
int nb_params; // "nb" is a widespread convention.
int nb_dns_connections; // Most people know what "DNS" stands for.
int lstm_size; // "LSTM" is a common machine learning abbreviation.

A few bad examples

int n; // Meaningless.
int nerr; // Ambiguous abbreviation.
int n_comp_conns; // Ambiguous abbreviation.
int wgc_connections; // Only your group knows what this stands for.
int pc_reader; // Lots of things can be abbreviated "pc".
int cstmr_id; // Deletes internal letters.
FooBarRequestInfo fbri; // Not even a word.

Note that certain universally-known abbreviations are OK, such as i for an iteration variable and T for a template
parameter.

For some symbols, this style guide recommends names to start with a capital letter and to have a capital letter for each
new word (a.k.a. “CamelCase”). When abbreviations appear in such names, prefer to capitalise every letter of the
abbreviation (i.e. FFTEngine, not FftEngine).

Template parameters should follow the naming style for their category: type template parameters should follow the
rules for type names, and non-type template parameters should follow the rules for constexpr variable names.

File Names

Filenames should be all lowercase and can include underscores (_). File names should indicate their content.

Examples of acceptable file names:

my_useful_class.cc # implementation of MyUsefulClass
my_useful_class.hh # interface and inlines of MyUsefulClass
fft_utils.hh # declarations (header) for a bunch of FFT-related tools
test_my_useful_class.cc // unittests for MyUsefulClass

C++ files should end in .cc and header files should end in .hh (see also the section on self-contained headers).

Do not use filenames that already exist in /usr/include or widely used libraries, such as db.hh.

In general, make your filenames very specific. For example, use http_server_logs.hh rather than logs.hh. A very
common case is to have a pair of files called, e.g., foo_bar.hh and foo_bar.cc, defining a class called FooBar.

Inline functions must be in a .hh file. If your inline functions are very short, they should go directly into your .hh file.

60 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Type Names

Type names start with a capital letter and have a capital letter for each new word (CamelCase), with no underscores:
MyExcitingClass, MyExcitingEnum.

The names of all types — classes, structs, type aliases, enums, and type template parameters — have the same naming
convention. Type names should start with a capital letter and have a capital letter for each new word. No underscores.
For example:

// classes and structs
class UrlTable { ...
class UrlTableTester { ...
struct UrlTableProperties { ...

// using aliases
using PropertiesMap_t = hash_map<UrlTableProperties *, string>;

// enums
enum UrlTableErrors { ...

There are two classes of very useful exception to above rules:
• When using aliases, please append _t for alias types _ptr for alias (smart) pointers and _ref for alias

references and std::reference_wrappers.

• In the specific context of type manipulations using the STL’s type traits, it can help readability to follow
the STL’s convention of lowercase type_names_with_undenscores_t.

Variable Names

The names of variables (including function parameters) and data members are all lowercase, with underscores between
words. For instance: a_local_variable, a_struct_data_member, this->a_class_data_member. Use class
members exclusively with explicit mention of the this pointer. Common Variable names

For example:

string table_name; // OK - uses underscore.

string tablename; // Bad - missing underscore.
string tableName; // Bad - mixed case.

struct and class Data Members

Data members of structs and classes, both static and non-static, are named like ordinary nonmember variables.

class TableInfo {
...

private:
string unique_name; // OK - underscore at end.
static Field_t<FieldCollection> gradient; // OK.

string tablename; // Bad - missing underscore.
};

See Structs vs. Classes for a discussion of when to use a struct versus a class.

3.5. C++ Coding Style and Convention 61

µSpectre Documentation, Release v0.1

constexpr and const Names

Variables declared constexpr and non-class template parameters are CamelCase, const are named like regular vari-
ables.

Function Names

Regular functions and methods are named like variables (lowercase name_with_underscore).

make_field()
get_nb_components()
compute_stresses()

Distinguish (member) functions that compute something at non-trivial cost from simple accessors to internal variables,
and constexpr static accessors:

compute_stresses() // not an accessor, does actual work
get_nb_components() // simple accessor
sdim() // constexpr compile-time access

Namespace Names

The main namespace is muSpectre. All subordinate namespaces are CamelCase. Avoid collisions between nested
namespaces and well-known top-level namespaces. If a namespace is only used to hide unnecessary internal compli-
cations, put it in namespace internal or namespace *_internal to indicate that these are implementation details
that the user does not have to bother with.

Keep in mind that the rule against abbreviated names applies to namespaces just as much as variable names. Code in-
side the namespace seldom needs to mention the namespace name, so there’s usually no particular need for abbreviation
anyway.

Avoid nested namespaces that match well-known top-level namespaces. Collisions between namespace names can lead
to surprising build breaks because of name lookup rules. In particular, do not create any nested std namespaces.

Enumerator Names

Enumerators (for both scoped and unscoped enums) should be named like constexpr variables (CamelCase).

Preferably, the individual enumerators should be named like constants. However, it is also acceptable to name them like
macros. The enumeration name, UrlTableErrors (and AlternateUrlTableErrors), is a type, and therefore mixed case.

//! Material laws can declare which type of strain measure they require and
//! µSpectre will provide it
enum class StrainMeasure {
Gradient, //!< placement gradient (y/x)
Infinitesimal, //!< small strain tensor .5(u + u)
GreenLagrange, //!< Green-Lagrange strain .5(F·F - I)
Biot, //!< Biot strain
Log, //!< logarithmic strain
Almansi, //!< Almansi strain
RCauchyGreen, //!< Right Cauchy-Green tensor
LCauchyGreen, //!< Left Cauchy-Green tensor

(continues on next page)

62 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

(continued from previous page)

no_strain_ //!< only for triggering static_assert
};

Note that the last case, StrainMeasure::no_strain_ is deliberately not named like an enum, to indicate that it is an
invalid state;

Macro Names

You’re not really going to define a macro, are you? If you do, they’re like this:
MY_MACRO_THAT_SCARES_SMALL_CHILDREN_AND_ADULTS_ALIKE.

Please see the description of macros; in general macros should not be used. However, if they are absolutely needed,
then they should be named with all capitals and underscores. Be ready to argue the need for a macro in your submission,
and prepare yourself for rejection if you do not have an overwhelmingly convincing reason.

#define ROUND(x) ...
#define PI_ROUNDED 3.0

Exceptions to Naming Rules

Exceptions are classes and as such follow the Type Names rules (CamelCase), but additionally end in Error, e.g.,
ProjectionError.

3.5.8 Comments

Though a pain to write, comments are absolutely vital to keeping our code readable. The following rules describe
what you should comment and where. But remember: while comments are very important, the best code is self-
documenting. Giving sensible names to types and variables is much better than using obscure names that you must
then explain through comments.

When writing your comments, write for your audience: the next contributor who will need to understand your code.
Be generous — the next one may be you!

Comment Style

Use either the // or /* ... */ syntax for comments that are only relevant within their context (local comments for
the reader/maintainer of your code)

Use //!, /** ... */, and //!< syntax for doxygen comments (which will end up being compiled into the API
Reference), see Doxygen for details on doxygen.

3.5. C++ Coding Style and Convention 63

http://www.stack.nl/~dimitri/doxygen/

µSpectre Documentation, Release v0.1

File Comments

Start each file with license boilerplate. e.g., for file common.hh authored by John Doe:

/**
* @file common.hh
*
* @author John Doe <John.Do@email.address>
*
* @date 01 May 2017
*
* @brief Small prototypes of commonly used types throughout µSpectre
*
* @section LICENSE
*
* Copyright © 2017 Till Junge, John Doe
*
* µSpectre is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3, or (at
* your option) any later version.
*
* µSpectre is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with µSpectre; see the file COPYING. If not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Additional permission under GNU GPL version 3 section 7
*
* If you modify this Program, or any covered work, by linking or combining it
* with proprietary FFT implementations or numerical libraries, containing parts
* covered by the terms of those libraries' licenses, the licensors of this
* Program grant you additional permission to convey the resulting work.
*/

Note on copyright: it is shared among the writers of the particular file, but chances are that in most cases, at least part
of each new file contains ideas or even copied-and-pasted snippets from other files. Give the authors of those files also
shared copyright.

File comments describe the contents of a file. If a file declares, implements, or tests exactly one abstraction that is
documented by a comment at the point of declaration, file comments are not required. All other files must have file
comments.

Every file should contain GPL boilerplate.

Do not duplicate comments in both the .hh and the .cc. Duplicated comments diverge.

64 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Class Comments

Every non-obvious class declaration should have an accompanying comment that describes what it is for and how it
should be used.

/**
* Virtual base class for all fields. A field represents
* meta-information for the per-pixel storage for a scalar, vector
* or tensor quantity and is therefore the abstract class defining
* the field. It is used for type and size checking at runtime and
* for storage of polymorphic pointers to fully typed and sized
* fields. `FieldBase` (and its children) are templated with a
* specific `FieldCollection` (derived from
* `muSpectre::FieldCollectionBase`). A `FieldCollection` stores
* multiple fields that all apply to the same set of
* pixels. Addressing and managing the data for all pixels is
* handled by the `FieldCollection`. Note that `FieldBase` does
* not know anything about about mathematical operations on the
* data or how to iterate over all pixels. Mapping the raw data
* onto for instance Eigen maps and iterating over those is
* handled by the `FieldMap`.
*/
template <class FieldCollection>
class FieldBase
{
...

};

The class comment should provide the reader with enough information to know how and when to use the class, as well
as any additional considerations necessary to correctly use the class. Document the assumptions the class makes, if
any. If an instance of the class can be accessed by multiple threads, take extra care to document the rules and invariants
surrounding multithreaded use.

The class comment is often a good place for a small example code snippet demonstrating a simple and focused usage
of the class.

When sufficiently separated (e.g. .hh and .cc files), comments describing the use of the class should go together
with its interface definition; comments about the class operation and implementation should accompany the interface
definition of the class’s methods.

3.5. C++ Coding Style and Convention 65

µSpectre Documentation, Release v0.1

Function Comments

Declaration comments describe use of the function; comments at the definition of a function describe operation.

Function Declarations

Every function declaration should have comments immediately preceding it that describe what the function does and
how to use it. These comments should be descriptive (“Opens the file”) rather than imperative (“Open the file”); the
comment describes the function, it does not tell the function what to do. In general, these comments do not describe
how the function performs its task. Instead, that should be left to comments in the function definition.

Types of things to mention in comments at the function declaration:

• What the inputs and outputs are.

• For class member functions: whether the object remembers reference arguments beyond the duration of the
method call, and whether it will free them or not.

• If the function allocates memory that the caller must free.

• Whether any of the arguments can be a null pointer.

• If there are any performance implications of how a function is used.

• If the function is re-entrant. What are its synchronisation assumptions?

Here is an example:

/** Returns an iterator for this table. It is the client's
* responsibility to delete the iterator when it is done with it,
* and it must not use the iterator once the GargantuanTable object
* on which the iterator was created has been deleted.
*
* The iterator is initially positioned at the beginning of the table.
*
* This method is equivalent to:
* Iterator* iter = table->NewIterator();
* iter->Seek("");
* return iter;
* If you are going to immediately seek to another place in the
* returned iterator, it will be faster to use NewIterator()
* and avoid the extra seek.
*/

Iterator get_iterator() const;

However, do not be unnecessarily verbose or state the completely obvious.

When documenting function overrides, focus on the specifics of the override itself, rather than repeating the comment
from the overridden function. In many of these cases, the override needs no additional documentation and thus only
brief comments are required.

When commenting constructors and destructors, remember that the person reading your code knows what constructors
and destructors are for, so comments that just say something like “destroys this object” are not useful. Document what
constructors do with their arguments (for example, if they take ownership of pointers), and what cleanup the destructor
does. If this is trivial, just name it (default constructor, move constructor, destructor etc).

66 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Function Definitions

If there is anything tricky about how a function does its job, the function definition should have an explanatory comment.
For example, in the definition comment you might describe any coding tricks you use, give an overview of the steps
you go through, or explain why you chose to implement the function in the way you did rather than using a viable
alternative. For instance, you might mention why it must acquire a lock for the first half of the function but why it is
not needed for the second half.

Note you should not just repeat the comments given with the function declaration, in the .hh file or wherever. It’s okay
to recapitulate briefly what the function does, but the focus of the comments should be on how it does it.

Variable Comments

In general the actual name of the variable should be descriptive enough to give a good idea of what the variable is used
for, but we require a short description for the API documentation.

Class Data Members

The purpose of each class data member (also called an instance variable or member variable) must be clear. If there
are any invariants (special values, relationships between members, lifetime requirements) not clearly expressed by the
type and name, they must be commented. However, if the type and name suffice (int nb_events;), a brief “number
of events” is a sufficient comment:

protected:

const std::string name; //!< the field's unique name
const size_t nb_components; //!< number of components per entry

//! reference to the collection this field belongs to
const FieldCollection & collection;
size_t pad_size; //!< size of padding region at end of buffer

Global Variables

All global variables should have a comment describing what they are, what they are used for, and (if unclear) why it
needs to be global. For example:

constexpr Dim_t oneD{1}; //!< constant for a one-dimensional problem
constexpr Dim_t twoD{2}; //!< constant for a two-dimensional problem
constexpr Dim_t threeD{3}; //!< constant for a three-dimensional problem
constexpr Dim_t firstOrder{1}; //!< constant for vectors
constexpr Dim_t secondOrder{2}; //!< constant second-order tensors
constexpr Dim_t fourthOrder{4}; //!< constant fourth-order tensors

3.5. C++ Coding Style and Convention 67

µSpectre Documentation, Release v0.1

Implementation Comments

In your implementation you should have comments in tricky, non-obvious, interesting, or important parts of your code.
Explanatory Comments

Tricky or complicated code blocks should have comments before them. Example:

/* original definition of the operator in de Geus et
* al. (https://doi.org/10.1016/j.cma.2016.12.032). However,
* they use a obscure definition of the double contraction
* between fourth-order and second-order tensors that has a
* built-in transpose operation (i.e., C = A:B <-> AB =
* C , note the inverted instead of), here, we define
* the double contraction without the transposition. As a
* result, this Projection operator produces the transpose of de
* Geus's */

for (Dim_t im = 0; im < DimS; ++im) {
for (Dim_t j = 0; j < DimS; ++j) {
for (Dim_t l = 0; l < DimS; ++l) {
get(G, im, j, l, im) = xi(j)*xi(l);

}
}

}

Line Comments

Also, lines that are non-obvious should get a comment at the end of the line. These end-of-line comments should be
separated from the code by at least one space. Example:

// If we have enough memory, mmap the data portion too.
mmap_budget = max<int64>(0, mmap_budget - index_->length());
if (mmap_budget >= data_size_ && !MmapData(mmap_chunk_bytes, mlock))
return; // Error already logged.

Note that there are both comments that describe what the code is doing, and comments that mention that an error has
already been logged when the function returns.

If you have several comments on subsequent lines, it can often be more readable to line them up:

do_something(); // Comment here so the comments line up.
do_somethingElseThatIsLonger(); // Two spaces between the code and the comment.
{ // One space before comment when opening a new scope is allowed,
// thus the comment lines up with the following comments and code.
do_somethingElse(); // Two spaces before line comments normally.

}
std::vector<string> list{

// Comments in braced lists describe the next element...
"First item",
// .. and should be aligned appropriately.
"Second item"};

do_something(); /* For trailing block comments, one space is fine. */

Self-describing code doesn’t need a comment. The comment from the example above would be obvious:

68 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

if (!IsAlreadyProcessed(element)) {
Process(element);

}

Punctuation, Spelling and Grammar

Pay attention to punctuation, spelling, and grammar; it is easier to read well-written comments than badly written ones.

Comments should be as readable as narrative text, with proper capitalisation and punctuation. In many cases, complete
sentences are more readable than sentence fragments. Shorter comments, such as comments at the end of a line of
code, can sometimes be less formal, but you should be consistent with your style.

Although it can be frustrating to have a code reviewer point out that you are using a comma when you should be using
a semicolon, it is very important that source code maintain a high level of clarity and readability. Proper punctuation,
spelling, and grammar help with that goal.

TODO Comments

Use TODO comments for code that is temporary, a short-term solution, or good-enough but not perfect.

TODOs should include the string TODO in all caps, followed by the name, e-mail address, Phabricator task number or
other identifier of the person or issue with the best context about the problem referenced by the TODO. The main purpose
is to have a consistent TODO that can be searched to find out how to get more details upon request. A TODO is not a
commitment that the person referenced will fix the problem. Thus when you create a TODO with a name, it is almost
always your name that is given.

// TODO(kl@gmail.com): Use a "*" here for concatenation operator.
// TODO(Zeke) change this to use relations.
// TODO(T1234): remove the "Last visitors" feature

If your TODO is of the form “At a future date do something” make sure that you either include a very specific date (“Fix
by November 2005”) or a very specific event (“Remove this code when all clients can handle XML responses.”).

Deprecation Comments

Mark deprecated interface points with DEPRECATED comments.

You can mark an interface as deprecated by writing a comment containing the word DEPRECATED in all caps. The
comment goes either before the declaration of the interface or on the same line as the declaration.

After the word DEPRECATED, write your name, e-mail address, or other identifier in parentheses.

A deprecation comment must include simple, clear directions for people to fix their call sites. In C++, you can imple-
ment a deprecated function as an inline function that calls the new interface point.

Marking an interface point DEPRECATEDwill not magically cause any call sites to change. If you want people to actually
stop using the deprecated facility, you will have to fix the call sites yourself or recruit a crew to help you.

New code should not contain calls to deprecated interface points. Use the new interface point instead. If you cannot
understand the directions, find the person who created the deprecation and ask them for help using the new interface
point.

3.5. C++ Coding Style and Convention 69

µSpectre Documentation, Release v0.1

3.5.9 Formatting

Coding style and formatting are pretty arbitrary, but a project is much easier to follow if everyone uses the same style.
Individuals may not agree with every aspect of the formatting rules, and some of the rules may take some getting
used to, but it is important that all project contributors follow the style rules so that they can all read and understand
everyone’s code easily.

To help you format code correctly, Google has created a settings file for emacs.

Line Length

Each line of text in your code should be at most 80 characters long.

We recognise that this rule is controversial, but so much existing code already adheres to it, and we feel that consistency
is important.

Pros:
Those who favour this rule argue that it is rude to force them to resize their windows and there is no need for
anything longer. Some folks are used to having several code windows side-by-side, and thus don’t have room to
widen their windows in any case. People set up their work environment assuming a particular maximum window
width, and 80 columns has been the traditional standard. Why change it?

Cons:
Proponents of change argue that a wider line can make code more readable. The 80-column limit is an hidebound
throwback to 1960s mainframes; modern equipment has wide screens that can easily show longer lines.

Decision:
80 characters is the maximum.

Exception:
Comment lines can be longer than 80 characters if it is not feasible to split them without harming readability,
ease of cut and paste or auto-linking – e.g. if a line contains an example command or a literal URL longer than
80 characters.

Exception:
A raw-string literal may have content that exceeds 80 characters. Except for test code, such literals should appear
near the top of a file.

Exception:
An #include statement with a long path may exceed 80 columns.

Exception:
You needn’t be concerned about header guards that exceed the maximum length.

Non-ASCII Characters

In comments and human-readable names in strings, non-ASCII characters should be used where they help readability,
and must use UTF-8 formatting, e.g.

/**
* verification of resultant strains: subscript for hard and
* for soft, N is nb_lays and N is nb_grid_pts, k is contrast
*
* l = l = l + l = l+l
* => = N/N + (N-N)/N
*

(continues on next page)

70 Chapter 3. Coding Convention

https://raw.githubusercontent.com/google/styleguide/gh-pages/google-c-style.el

µSpectre Documentation, Release v0.1

(continued from previous page)

* is constant across all layers
* =
* => E = E
* => = 1/k
* => / (1/k N/N + (N-N)/N) =
*/

constexpr Real factor{1/contrast * Real(nb_lays)/nb_grid_pts[0]
+ 1.-nb_lays/Real(nb_grid_pts[0])};

template <Dim_t DimS, Dim_t DimM>
MaterialHyperElastoPlastic1<DimS, DimM>::
MaterialHyperElastoPlastic1(std::string name, Real young, Real poisson,

Real tau_y0, Real H)
: Parent{name},
plast_flow_field("cumulated plastic flow ", this->internal_fields),
F_prev_field("Previous placement gradient F", this->internal_fields),
be_prev_field("Previous left Cauchy-Green deformation b",

this->internal_fields),
young{young}, poisson{poisson},
lambda{Hooke::compute_lambda(young, poisson)},
mu{Hooke::compute_mu(young, poisson)},
K{Hooke::compute_K(young, poisson)},
tau_y0{tau_y0}, H{H},
// the factor .5 comes from equation (18) in Geers 2003
// (https://doi.org/10.1016/j.cma.2003.07.014)
C{0.5*Hooke::compute_C_T4(lambda, mu)},
internal_variables{F_prev_field.get_map(), be_prev_field.get_map(),

plast_flow_field.get_map()}
{}

You shouldn’t use the C++11 char16_t and char32_t character types, since they’re for non-UTF-8 text. For similar
reasons you also shouldn’t use wchar_t.

Spaces vs. Tabs

Use only spaces, and indent 2 spaces at a time.

We use spaces for indentation. Do not use tabs in your code. You should set your editor to emit spaces when you hit
the tab key.

Function Declarations and Definitions

Return type on the same line as function name, parameters on the same line if they fit. Wrap parameter lists which do
not fit on a single line as you would wrap arguments in a function call.

Functions look like this:

ReturnType ClassName::function_name(Type par_name1, Type par_name2) {
do_something();

}

If you have too much text to fit on one line:

3.5. C++ Coding Style and Convention 71

µSpectre Documentation, Release v0.1

ReturnType ClassName::really_long_function_name(Type par_name1,
Type par_name2,
Type par_name3) {

do_something();
}

or if you cannot fit even the first parameter, be reasonable, in the spirit of readability:

template<class FieldCollection, class EigenArray, class EigenConstArray,
class EigenPlain, Map_t map_type, bool ConstField>

typename MatrixLikeFieldMap<FieldCollection, EigenArray, EigenConstArray,
EigenPlain, map_type, ConstField>::const_reference

MatrixLikeFieldMap<FieldCollection, EigenArray, EigenConstArray, EigenPlain,
map_type, ConstField>::

operator[](const Ccoord & ccoord) const{
size_t index{};
index = this->collection.get_index(ccoord);
return const_reference(this->get_ptr_to_entry(std::move(index)));

}

Some points to note:

• Choose good parameter names.

• If you cannot fit the return type and the function name on a single line, break between them.

• If you break after the return type of a function declaration or definition, do not indent.

• There is never a space between the function name and the open parenthesis.

• There is never a space between the parentheses and the parameters.

• The open curly brace is always on the end of the last line of the function declaration, not the start of the next line.

• The close curly brace is either on the last line by itself or on the same line as the open curly brace.

• There should be a space between the close parenthesis and the open curly brace.

• All parameters should be aligned if possible.

• Default indentation is 2 spaces.

Unused parameters that might not be obvious must comment out the variable name in the function definition:

class Shape {
public:
virtual void rotate(double radians) = 0;

};

class Circle : public Shape {
public:
void rotate(double radians) override;

};

void Circle::rotate(double /*radians*/) {}

// Bad - if someone wants to implement later, it's not clear what the
// variable means.
void Circle::rotate(double) {}

72 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Attributes, and macros that expand to attributes, appear at the very beginning of the function declaration or definition,
before the return type:

Lambda Expressions

Format parameters and bodies as for any other function, and capture lists like other comma-separated lists.

For by-reference captures, do not leave a space between the ampersand (&) and the variable name.

int x = 0;
auto x_plus_n = [&x](int n) -> int { return x + n; }

Short lambdas may be written inline as function arguments.

std::set<int> blacklist = {7, 8, 9};
std::vector<int> digits = {3, 9, 1, 8, 4, 7, 1};
digits.erase(std::remove_if(digits.begin(), digits.end(), [&blacklist](int i) {

return blacklist.find(i) != blacklist.end();
}),
digits.end());

Function Calls

Either write the call all on a single line, wrap the arguments at the parenthesis, or use common sense to help readability.
In the absence of other considerations, use the minimum number of lines, including placing multiple arguments on each
line where appropriate.

Function calls have the following format:

result = do_something(argument1, argument2, argument3);

If the arguments do not all fit on one line, they should be broken up onto multiple lines, with each subsequent line
aligned with the first argument. Do not add spaces after the open parenthesis or before the close parenthesis:

result = do_something(averyveryveryverylongargument1,
argument2, argument3);

Arguments may optionally all be placed on subsequent lines.

if (...) {
...
...
if (...) {
bool result = do_something
(argument1, argument2,
argument3, argument4);

...
}

Put multiple arguments on a single line to reduce the number of lines necessary for calling a function unless there is a
specific readability problem. Some find that formatting with strictly one argument on each line is more readable and
simplifies editing of the arguments. However, we prioritise for the reader over the ease of editing arguments, and most
readability problems are better addressed with the following techniques.

3.5. C++ Coding Style and Convention 73

µSpectre Documentation, Release v0.1

If having multiple arguments in a single line decreases readability due to the complexity or confusing nature of the
expressions that make up some arguments, try creating variables that capture those arguments in a descriptive name:

int my_heuristic{scores[x] * y + bases[x]};
result = do_something(my_heuristic, x, y, z);

Or put the confusing argument on its own line with an explanatory comment:

result = do_something(scores[x] * y + bases[x], // Score heuristic.
x, y, z);

If there is still a case where one argument is significantly more readable on its own line, then put it on its own line. The
decision should be specific to the argument which is made more readable rather than a general policy.

Sometimes arguments form a structure that is important for readability. In those cases, feel free to format the arguments
according to that structure:

// Transform the widget by a 3x3 matrix.
my_widget.transform(x1, x2, x3,

y1, y2, y3,
z1, z2, z3);

Braced Initialiser List Format

Format a braced initialiser list exactly like you would format a function call in its place.

If the braced list follows a name (e.g. a type or variable name), format as if the {} were the parentheses of a function
call with that name. If there is no name, assume a zero-length name.

// Examples of braced init list on a single line.
return {foo, bar};
function_call({foo, bar});
std::pair<int, int> p{foo, bar};

// When you have to wrap.
some_function(

{"assume a zero-length name before {"},
some_other_function_parameter);

SomeType variable{
some, other, values,
{"assume a zero-length name before {"},
SomeOtherType{

"Very long string requiring the surrounding breaks.",
some, other values},

SomeOtherType{"Slightly shorter string",
some, other, values}};

SomeType variable{
"This is too long to fit all in one line"};

MyType m = { // Here, you could also break before {.
superlongvariablename1,
superlongvariablename2,
{short, interior, list},
{interiorwrappinglist,
interiorwrappinglist2}};

74 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Conditionals

Prefer no spaces inside parentheses. The if and else keywords belong on separate lines.

if (condition) { // no spaces inside parentheses
... // 2 space indent.

} else if (...) { // The else goes on the same line as the closing brace.
...

} else {
...

}

Note that in all cases you must have a space between the if and the open parenthesis. You must also have a space
between the close parenthesis and the curly brace.

if(condition) { // Bad - space missing after IF.
if (condition){ // Bad - space missing before {.
if(condition){ // Doubly bad.

if (condition) { // Good - proper space after IF and before {.

Short conditional statements may be written on one line if this enhances readability. You may use this only when the
line is brief and the statement does not use the else clause. You must still use curly braces, as they exclude a particularly
dumb class of bugs.

if (x == kFoo) {return new Foo()};
if (x == kBar) {return new Bar()};

This is not allowed when the if statement has an else:

// Not allowed - IF statement on one line when there is an ELSE clause
if (x) {do_this()};
else {do_that()};

Loops and Switch Statements

Switch statements must use braces for blocks. Annotate non-trivial fall-through between cases. Empty loop bodies
should use {continue;}.

case blocks in switch statements have curly braces which should be placed as shown below.

If not conditional on an enumerated value, switch statements should always have a default case (in the case of an
enumerated value, the compiler will warn you if any values are not handled). If the default case should never execute,
treat this as an error. For example:

switch (form) {
case Formulation::finite_strain: {
return StrainMeasure::Gradient;
break;

}
case Formulation::small_strain: {
return StrainMeasure::Infinitesimal;
break;

(continues on next page)

3.5. C++ Coding Style and Convention 75

µSpectre Documentation, Release v0.1

(continued from previous page)

}
default:
return StrainMeasure::no_strain_;
break;

}

Braces are required even for single-statement loops.

for (int i = 0; i < kSomeNumber; ++i)
std::cout << "I love you" << std::endl; // Bad!

for (int i = 0; i < kSomeNumber; ++i) {
std::cout << "I take it back" << std::endl;

} // Good!

Pointer and Reference Expressions

No spaces around period or arrow. Pointer operators may have trailing spaces.

The following are examples of correctly-formatted pointer and reference expressions:

x = *p;
x = * p; // also ok
p = &x;
p = & x;
x = r.y;
x = r->y;

Note that:

• There are no spaces around the period or arrow when accessing a member.

• Pointer operators have no space after the * or &.

Boolean Expressions

When you have a boolean expression that is longer than the standard line length, be consistent in how you break up the
lines.

In this example, the logical AND operator is always at the end of the lines:

if (this_one_thing > this_other_thing &&
a_third_thing == a_fourth_thing &&
yet_another && last_one) {

...
}

Note that when the code wraps in this example, both of the && logical AND operators are at the end of the line. This
is more common, though wrapping all operators at the beginning of the line is also allowed. Feel free to insert extra
parentheses judiciously because they can be very helpful in increasing readability when used appropriately.

76 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Return Values

Do not needlessly surround the return expression with parentheses.

Use parentheses in return expr; only where you would use them in x = expr;.

return result; // No parentheses in the simple case.
// Parentheses OK to make a complex expression more readable.
return (some_long_condition &&

another_condition);

return (value); // You wouldn't write var = (value);
return(result); // return is not a function!

Variable and Array Initialisation

Use {} when possible, () when necessary, avoid =.

int x(3.5);
int x{3};
string name{"Some Name"};

string name("Some Name"); // could have used non-narrowing {}
int x = 3; // could have used non-narrowing {}
string name = "Some Name"; // could have used non-narrowing {}

Be careful when using a braced initialisation list {...} on a type with an std::initialiser_list constructor.
A nonempty braced-init-list prefers the std::initialiser_list constructor whenever possible. Note that empty
braces {} are special, and will call a default constructor if available. To force the non-std::initialiser_list
constructor, use parentheses instead of braces.

std::vector<int> v(100, 1); // A vector containing 100 items: All 1s.
std::vector<int> v{100, 1}; // A vector containing 2 items: 100 and 1.

Also, the brace form prevents narrowing of integral types. This can prevent some types of programming errors.

int pi(3.14); // OK -- pi == 3.
int pi{3.14}; // Compile error: narrowing conversion.

Preprocessor Directives

The hash mark that starts a preprocessor directive should always be at the beginning of the line.

Even when preprocessor directives are within the body of indented code, the directives should start at the beginning of
the line.

// Good - directives at beginning of line
if (lopsided_score) {

#if DISASTER_PENDING // Correct -- Starts at beginning of line
DropEverything();

if NOTIFY // OK but not required -- Spaces after
NotifyClient();

(continues on next page)

3.5. C++ Coding Style and Convention 77

µSpectre Documentation, Release v0.1

(continued from previous page)

endif
#endif

BackToNormal();
}

// Bad - indented directives
if (lopsided_score) {
#if DISASTER_PENDING // Wrong! The "#if" should be at beginning of line
DropEverything();
#endif // Wrong! Do not indent "#endif"
BackToNormal();

}

Class Format

Sections in public, protected and private order, each unindented.

The basic format for a class definition (lacking the comments, see Class Comments for a discussion of what comments
are needed) is:

class MyClass : public OtherClass {
public: // Note the 1 space indent!
MyClass(); // Regular 2 space indent.
explicit MyClass(int var);
~MyClass() {}

void some_function();
void some_function_that_does_nothing() {
}

void set_some_var(int var) { some_var_ = var; }
int some_var() const { return some_var_; }

protected:
bool SomeInternalFunction();

int some_var_;
int some_other_var_;

};

Things to note:

• Any base class name should be on the same line as the subclass name, subject to the 80-column limit.

• The public:, protected:, and private: keywords should not be indented.

• Except for the first instance, these keywords should be preceded by a blank line. This rule is optional in small
classes.

• Do not leave a blank line after these keywords.

• The public section should be first, followed by the protected and finally the private section.

• See Declaration Order for rules on ordering declarations within each of these sections.

78 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

Constructor Initialiser Lists

Constructor initialiser lists can be all on one line or with subsequent lines indented four spaces.

The acceptable formats for initialiser lists are:

// wrap before the colon and indent 2 spaces:
MyClass::MyClass(int var)
:some_var_(var), some_other_var_(var + 1) {
do_something();

}

// When the list spans multiple lines, put each member on its own line
// and align them:
MyClass::MyClass(int var)
:some_var_(var), // 4 space indent
some_other_var_(var + 1) { // lined up
do_something();

}

// As with any other code block, the close curly can be on the same
// line as the open curly, if it fits.
MyClass::MyClass(int var)
:some_var_(var) {}

Namespace Formatting

The contents of namespaces are indented normally.

Namespaces add an extra level of indentation. For example, use:

namespace {

void foo() { // Correct. Extra indentation within namespace.
...

}

} // namespace

Indent within a namespace:

namespace {

// Wrong! Not indented when it should not be.
void foo() {
...

}

} // namespace

When declaring nested namespaces, put each namespace on its own line.

namespace foo {
namespace bar {

3.5. C++ Coding Style and Convention 79

µSpectre Documentation, Release v0.1

Horizontal Whitespace

Use of horizontal whitespace depends on location. Never put trailing whitespace at the end of a line.

General

void f(bool b) { // Open braces should always have a space before them.
...

int i{0}; // Semicolons usually have no space before them.
// Spaces inside braces for braced-init-list are optional. If you use them,
// put them on both sides!
int x[] = { 0 };
int x[] = {0};

// Spaces after the colon in inheritance and initialiser lists.
class Foo: public Bar {
public:
// For inline function implementations, put spaces between the braces
// and the implementation itself.
Foo(int b) : Bar(), baz_(b) {} // No spaces inside empty braces.
void Reset() { baz_ = 0; } // Spaces separating braces from implementation.
...

Adding trailing whitespace can cause extra work for others editing the same file, when they merge, as can removing
existing trailing whitespace. So: Don’t introduce trailing whitespace. Remove it if you’re already changing that line,
or do it in a separate clean-up operation (preferably when no-one else is working on the file).

Loops and Conditionals

if (b) { // Space after the keyword in conditions and loops.
} else { // Spaces around else.
}
while (test) {} // There is usually no space inside parentheses.
switch (i) {
for (int i = 0; i < 5; ++i) {
// Loops and conditions may have spaces inside parentheses, but this
// is rare. Be consistent.
switch (i) {
if (test) {
for (int i{0}; i < 5; ++i) {
// For loops always have a space after the semicolon. They may have a space
// before the semicolon, but this is rare.
for (; i < 5 ; ++i) {
...

// Range-based for loops always have a space before and after the colon.
for (auto x : counts) {
...

}
switch (i) {
case 1: // No space before colon in a switch case.

(continues on next page)

80 Chapter 3. Coding Convention

µSpectre Documentation, Release v0.1

(continued from previous page)

...
case 2: break; // Use a space after a colon if there's code after it.

Operators

// Assignment operators always have spaces around them.
x = 0;

// Other binary operators usually have spaces around them, but it's
// OK to remove spaces around factors. Parentheses should have no
// internal padding.
v = w * x + y / z;
v = w*x + y/z;
v = w * (x + z);

// No spaces separating unary operators and their arguments.
x = -5;
++x;
if (x && !y)
...

Templates and Casts

// No spaces inside the angle brackets (< and >), before
// <, or between >(in a cast
std::vector<string> x;
y = static_cast<char*>(x);

// Spaces between type and pointer are OK, but be consistent.
std::vector<char *> x;

Vertical Whitespace

Minimise use of vertical whitespace.

This is more a principle than a rule: don’t use blank lines when you don’t have to. In particular, don’t put more than
one or two blank lines between functions, resist starting functions with a blank line, don’t end functions with a blank
line, and be discriminating with your use of blank lines inside functions.

The basic principle is: The more code that fits on one screen, the easier it is to follow and understand the control flow
of the program. Of course, readability can suffer from code being too dense as well as too spread out, so use your
judgement. But in general, minimise use of vertical whitespace.

Some rules of thumb to help when blank lines may be useful:

• Blank lines at the beginning or end of a function very rarely help readability.

• Blank lines inside a chain of if-else blocks may well help readability.

3.5. C++ Coding Style and Convention 81

µSpectre Documentation, Release v0.1

3.5.10 Exceptions to the Rules

The coding conventions described above are mandatory. However, like all good rules, these sometimes have exceptions,
which we discuss here.

Existing Non-conformant Code

You may diverge from the rules when dealing with code that does not conform to this style guide.

If you find yourself modifying code that was written to specifications other than those presented by this guide, you
may have to diverge from these rules in order to stay consistent with the local conventions in that code. If you are in
doubt about how to do this, ask the original author or the person currently responsible for the code. Remember that
consistency includes local consistency, too.

Windows Code

Just kidding.

3.5.11 Parting Words

Use common sense and BE CONSISTENT.

If you are editing code, take a few minutes to look at the code around you and determine its style. If they use spaces
around their if clauses, you should, too. If their comments have little boxes of stars around them, make your comments
have little boxes of stars around them too.

The point of having style guidelines is to have a common vocabulary of coding so people can concentrate on what you
are saying, rather than on how you are saying it. We present global style rules here so people know the vocabulary. But
local style is also important. If code you add to a file looks drastically different from the existing code around it, the
discontinuity throws readers out of their rhythm when they go to read it. Try to avoid this.

OK, enough writing about writing code; the code itself is much more interesting. Have fun!

3.6 Python Coding Style

µSpectre is a C++ project with a thin Python wrapping. Try to follow the spirit of the C++ Coding Style and Convention,
as far as it fits into pep8. in case of conflict, follow pep8

3.7 References

Hunt (2000) A. Hunt. The pragmatic programmer : from journeyman to master. Addison-Wesley, Reading, Mass,
2000. ISBN 978-0-2016-1622-4.

Meyers (2014) Scott Meyers. Effective Modern C++, O’Reilly Media, November 2014, ISBN 978-1491903995

82 Chapter 3. Coding Convention

http://shop.oreilly.com/product/0636920033707.do

CHAPTER

FOUR

ORGANISATION OF THE CODE

µSpectre’s code base is split in three components which might be separated into different projects in the future, and
this logical separation is already apparent in the directory structure. The three components are 1. µGrid 2. µFFT 3.
µSpectre proper

At the lowest level, the header-only library µGrid, contains a set of tools to define and interact with mathematical fields
discretised on a regular spatial grid as used by the FFT. It is discussed in more detail in its own section.

On top of µGrid the library µFFT provides an uniform interface for multiple FFT implementations.

And finally µSpectre itself makes use of the two lower-level libraries and defines all the abstractions and classes to
define material behaviours and to solve mechanics problems.

4.1 µGrid

As the lowest-level component of µSpectre, µGrid defines all the commonly used type aliases and data structures
used througout the project. The most common aliases are described below, but it is worth having a look at the file
grid_common.hh for the details.

4.1.1 Common Type Aliases

All mathematical calculations should use the types.

Warning: doxygengroup: Cannot find group “Scalars” in doxygen xml output for project “µSpectre” from direc-
tory: ./doxygenxml

While it is possible to use other types in principle, these are the ones for which all datastructures are tested and which
are known to work. Also, other µSpectre developpers will expect and understand these types.

Dimensions are counted using the signed integer type muGrid::Dim_t. This is necessary because Eigen uses -1 to
signify a dynamic number of dimensions.

The types muGrid::Rcoord_t and muGrid::Ccoord_t are used to represent real-valued coordinates and integer-
valued coordinates (i.e., pixel- or cell-coordinates).

group Coordinates

83

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://gitlab.com/muspectre/muspectre/blob/master/src/libmugrid/grid_common.hh
eigen.tuxfamily.org

µSpectre Documentation, Release v0.1

Typedefs

using Ccoord_t = std::array<Dim_t, Dim>
Ccoord_t are cell coordinates, i.e. integer coordinates.

using Rcoord_t = std::array<Real, Dim>
Real space coordinates.

using DynCcoord_t = DynCcoord<threeD>
usually, we should not need omre than three dimensions

using DynRcoord_t = DynCcoord<threeD, Real>
usually, we should not need omre than three dimensions

Functions

template<typename T, size_t Dim>
Eigen::Map<Eigen::Matrix<T , Dim, 1>> eigen(std::array<T , Dim> &coord)

return a Eigen representation of the data stored in a std::array (e.g., for doing vector operations on a coor-
dinate)

template<typename T, size_t Dim>
Eigen::Map<const Eigen::Matrix<T , Dim, 1>> eigen(const std::array<T , Dim> &coord)

return a constant Eigen representation of the data stored in a std::array (e.g., for doing vector operations on
a coordinate)

template<typename T, size_t MaxDim>
Eigen::Map<Eigen::Matrix<T , Eigen::Dynamic, 1>> eigen(DynCcoord<MaxDim, T> &coord)

return a Eigen representation of the data stored in a std::array (e.g., for doing vector operations on a coor-
dinate)

template<typename T, size_t MaxDim>
Eigen::Map<const Eigen::Matrix<T , Eigen::Dynamic, 1>> eigen(const DynCcoord<MaxDim, T> &coord)

return a const Eigen representation of the data stored in a std::array (e.g., for doing vector operations on a
coordinate)

template<size_t MaxDim, typename T = Dim_t>

class DynCcoord
#include <grid_common.hh> Class to represent integer (cell-) coordinates or real-valued coordinates. This
class can dynamically accept any spatial-dimension between 1 and MaxDim, and DynCcoord references can
be cast to muGrid::Ccoord_t & or muGrid::Rcoord_t & references. These are used when templating
with the spatial dimension of the problem is undesireable/impossible.

84 Chapter 4. Organisation of the Code

µSpectre Documentation, Release v0.1

Public Types

using iterator = typename std::array<T , MaxDim>::iterator
iterator type

using const_iterator = typename std::array<T , MaxDim>::const_iterator
constant iterator type

Public Functions

inline DynCcoord()
default constructor

inline DynCcoord(std::initializer_list<T> init_list)
constructor from an initialiser list for compound initialisation.

Parameters
init_list – The length of the initialiser list becomes the spatial dimension of the coordi-
nate, therefore the list must have a length between 1 and MaxDim

inline explicit DynCcoord(Dim_t dim)

Constructor only setting the dimension. WARNING: This constructor needs regular (round) braces ‘()’,
using curly braces ‘{}’ results in the initialiser list constructor being called and creating a DynCcoord
with spatial dimension 1

Parameters
dim – spatial dimension. Needs to be between 1 and MaxDim

template<size_t Dim>
inline explicit DynCcoord(const std::array<T , Dim> &ccoord)

Constructor from a statically sized coord.

DynCcoord(const DynCcoord &other) = default
Copy constructor.

DynCcoord(DynCcoord &&other) = default
Move constructor.

~DynCcoord() = default
nonvirtual Destructor

template<size_t Dim>
inline DynCcoord &operator=(const std::array<T , Dim> &ccoord)

Assign arrays.

DynCcoord &operator=(const DynCcoord &other) = default
Copy assignment operator.

DynCcoord &operator=(DynCcoord &&other) = default
Move assignment operator.

template<size_t Dim2>
inline bool operator==(const std::array<T , Dim2> &other) const

comparison operator

4.1. µGrid 85

µSpectre Documentation, Release v0.1

inline bool operator==(const DynCcoord &other) const
comparison operator

template<typename T2>
inline DynCcoord<MaxDim, decltype(T{} / T2{})> operator/(const DynCcoord<MaxDim, T2>

&other) const
element-wise division

inline T &operator[](const size_t &index)
access operator

inline const T &operator[](const size_t &index) const
access operator

template<size_t Dim>
inline operator std::array<T, Dim>() const

conversion operator

template<Dim_t Dim>
inline std::array<T , Dim> &get()

cast to a reference to a statically sized array

template<Dim_t Dim>
inline const std::array<T , Dim> &get() const

cast to a const reference to a statically sized array

inline const Dim_t &get_dim() const
return the spatial dimension of this coordinate

inline iterator begin()
iterator to the first entry for iterating over only the valid entries

inline iterator end()
iterator past the dim-th entry for iterating over only the valid entries

inline const_iterator begin() const
const iterator to the first entry for iterating over only the valid entries

inline const_iterator end() const
const iterator past the dim-th entry for iterating over only the valid entries

inline T *data()
return the underlying data pointer

inline const T *data() const
return the underlying data pointer

inline T &back()
return a reference to the last valid entry

inline const T &back() const
return a const reference to the last valid entry

These types are also used to define nb_grid_pts or spatial lengths for computational domains.

86 Chapter 4. Organisation of the Code

µSpectre Documentation, Release v0.1

4.1.2 Field Data Types

The most important part of µGrid to understand is how it handles field data and access to it. By field we mean the
discretisation of a mathematical field on the grid points, i.e., numerical data associated with all pixels/voxels of an
FFT grid or a subset thereof. The numerical data can be scalar, vectorial, matricial, tensorial or a generic array of
integer, real or complex values per pixel.

Fields that are defined on every pixel/voxel of a grid are called global fields while fields defined on a subset of pix-
els/voxels local fields. As an example, the strain field is a global field for any calculation (it exists in the entire domain),
while for instance the field of an internal (state) variable of a material in a composite is only defined for the pixels that
belong to that material.

There are several ways in which we interact with fields, and the same field might be interacted with in different ways
by different parts of a problem. Let’s take the (global) strain field in a three-dimensional finite strain problem with
255 × 255 × 255 voxels as an example: the solver treats it as a long vector (of length 32 · 2553), the FFT sees it as a
four-dimensional array of shape 255 × 255 × 255 × 32, and from the constitutive laws’ perspective, it is just a sequence
of second-rank tensors (i.e., shape 2553 × 3 × 3).

Basic µGrid Field Concepts

In order to reconcile these different interpretations without copying data around, µGrid splits the concept of a field into
three components:

• storage

This refers managing the actual memory in which field data is held. For this, the storage abstraction needs to
know the scalar type of data (Int, Real, Complex, e.t.c.), the number of pixels/voxels for which the field is
defined, and the number of scalar components per pixel/voxel (e.g., 9 for a second-rank asymmetric tensor in a
three-dimensional problem).

µGrid’s abstraction for field data storage is the field represented by a child class of
FieldBase<FieldCollection_t>, see fields.

• representation

Meaning how to interpret the data at a given pixel/voxel (i.e., is it a vector, a matrix, . . .). This will also determine
which mathematical operations can be performed on per-pixel/voxel data. The representation allows also to iterate
over a field pixel/voxel by pixel/voxel.

µGrid’s abstraction for field representations is the field map represented by a child class of
FieldMap<FieldCollection_t, Scalar_t, NbComponents[, IsConst]>, see field_map.

• per-pixel/voxel access/iteration

Given a pixel/voxel coordinate or index, the position of the associated pixel/voxel data is a function of the type of
field (global or local). Since the determination procedure is identical for every field defined on the same domain,
this ability (and the associated overhead) can be centralised into a manager of field collections.

µGrid’s abstraction for field access and management is the field collection represented by the two classes
LocalFieldCollection<Dim> and GlobalFieldCollection<Dim>, see field_collection.

4.1. µGrid 87

µSpectre Documentation, Release v0.1

Fields

Fields are where the data is stored, so they are mainly distinguished by the scalar type they store (Int, Real or
Complex), and the number of components (statically fixed size, or dynamic size).

The most commonly used fields are the statically sized ones, TensorField, MatrixField, and the ScalarField
(which is really just a 1×1 matrix field).

Less commonly, we use the dynamically sized TypedField , but more on this later.

Fields have a protected constructor, which means that you cannot directly build a field object, in-
stead you have to go through the factory function make_field<Field_t>(name, collection) (or
make_statefield<Field_t>(name, collection) if you’re building a statefield, see state_field) to create
them and you only receive a reference to the built field. The field itself is stored in a std::unique_ptr which is
registered in and managed by a field collection. This mechanism is meant to ensure that fields are not copied around
or free’d so that field maps always remain valid and unambiguously linked to a field.

Fields give access to their bulk memory in form of an Eigen:Map. This is useful for instance for accessing the global
strain, stress, and tangent moduli fields in the solver.

Example: Using fields as global arrays:

The following is a code example from the standard Cell:

1 template <Dim_t DimS, Dim_t DimM>
2 auto CellBase<DimS, DimM>::get_strain_vector() -> Vector_ref {
3 return this->get_strain().eigenvec();
4 }

The return value of :cpp:function:`Cell::get_strain_vector()<muSpectre::CellBase::get_strain_vector>` is an
Eigen::Map onto a matrix of shape 1×N.

If you wish to handle field data on a per-pixel/voxel basis, the mechanism for that is the field map and is described in
field_map.

Field Maps

Field maps are light-weight resource handles (meaning they can be created and destroyed cheaply) that are iterable and
provide direct per-pixel/voxel access to the data stored in the mapped field.

The choice of field map defines the type of reference you obtain when dereferencing an iterator or using the direct
random acccess operator [].

Typically used field maps include:

• ScalarFieldMap,

• ArrayFieldMap,

• MatrixFieldMap, and the

• T4MatrixFieldMap.

All of these are fixed size (meaning their size is set at compile time) and therefore support fast linear algebra on the
iterates. There is also a dynamically sized field map type, the TypedFieldMap which is useful for debugging and
python bindings. It supports all the features of the fixed-size maps, but linear algebra on the iterates will be slow
because it cannot be effectively vectorised.

88 Chapter 4. Organisation of the Code

µSpectre Documentation, Release v0.1

Example 1: Iterating over fields and do math on the iterates:

The following is a code example from the tests of the finite-strain projection operator defined by T.W.J. de Geus, J.
Vondřejc, J. Zeman, R.H.J. Peerlings, M.G.D. Geers.

1 for (auto && tup :
2 akantu::zip(fields.get_pixels().template get_dimensioned_pixels<dim>(),
3 grad, var)) {
4 auto & ccoord = std::get<0>(tup); // iterate from fields
5 auto & g = std::get<1>(tup); // iterate from grad
6 auto & v = std::get<2>(tup); // iterate from var
7

8 // use iterate in arbitrary expressions
9 Vector vec = muGrid::CcoordOps::get_vector(

10 ccoord, (fix::projector.get_domain_lengths() /
11 fix::projector.get_nb_domain_grid_pts())
12 .template get<dim>());
13 // do efficient linear algebra on iterates
14 g.row(0) = k.transpose() *
15 cos(k.dot(vec)); // This is a plane wave with wave vector k in
16 // real space. A valid gradient field.
17 v.row(0) = g.row(0);
18 }

Field Collections

Field collections come in two flavours; LocalFieldCollection<Dim> and GlobalFieldCollection<Dim> and
are templated by the spatial dimension of the problem. They adhere to the interface defined by their common base
class, FieldCollectionBase. Both types are iterable (the iterates are the coordinates of the pixels/voxels for which
the fields of the collection are defiened.

Global field collections need to be given the problem nb_grid_pts (i.e. the size of the grid) at initialisation, while local
collections need to be filled with pixels/voxels through repeated calls to add_pixel(pixel). At initialisation, they
derive their size from the number of pixels that have been added.

Fields (State Fields) are identified by their unique name (prefix) and can be retrieved in multiple ways:

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::operator[]” in doxygen xml
output for project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::at” in doxygen xml output for
project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::get_typed_field” in doxygen
xml output for project “µSpectre” from directory: ./doxygenxml

4.1. µGrid 89

https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1016/j.cma.2016.12.032

µSpectre Documentation, Release v0.1

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::get_statefield” in doxygen xml
output for project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::get_typed_statefield” in doxy-
gen xml output for project “µSpectre” from directory: ./doxygenxml

• per-pixel/voxel access/iteration

Given a pixel/voxel coordinate or index, the position of the associated pixel/voxel data is a function of the type of
field (global or local). Since the determination procedure is identical for every field defined on the same domain,
this ability (and the associated overhead) can be centralised into a manager of field collections.

µGrid’s abstraction for field access and management is the field collection represented by the two classes
LocalFieldCollection<Dim> and LocalFieldCollection<Dim>, see field_collection.

Fields

Fields are where the data is stored, so they are mainly distinguished by the scalar type they store (Int, Real or
Complex), and the number of components (statically fixed size, or dynamic size).

The most commonly used fields are the statically sized ones, TensorField, MatrixField, and the ScalarField
(which is really just a 1×1 matrix field).

Less commonly, we use the dynamically sized TypedField , but more on this later.

Fields have a protected constructor, which means that you cannot directly build a field object, in-
stead you have to go through the factory function make_field<Field_t>(name, collection) (or
make_statefield<Field_t>(name, collection) if you’re building a statefield, see state_field) to create
them and you only receive a reference to the built field. The field itself is stored in a std::unique_ptr which is
registered in and managed by a field collection. This mechanism is meant to ensure that fields are not copied around
or free’d so that field maps always remain valid and unambiguously linked to a field.

Fields give access to their bulk memory in form of an Eigen:Map. This is useful for instance for accessing the global
strain, stress, and tangent moduli fields in the solver.

If you wish to handle field data on a per-pixel/voxel basis, the mechanism for that is the field map and is described in
field_map.

Example: Using fields as global arrays:

The following is a code example from the standard Cell:

1 template <Dim_t DimS, Dim_t DimM>
2 auto CellBase<DimS, DimM>::get_strain_vector() -> Vector_ref {
3 return this->get_strain().eigenvec();
4 }

The return value of :cpp:function:`Cell::get_strain_vector()<muSpectre::CellBase::get_strain_vector>` is an
Eigen::Map onto a matrix of shape 1×N.

If you wish to handle field data on a per-pixel/voxel basis, the mechanism for that is the field map and is described in
field_map.

90 Chapter 4. Organisation of the Code

µSpectre Documentation, Release v0.1

Field Maps

Field maps are light-weight resource handles (meaning they can be created and destroyed cheaply) that are iterable and
provide direct per-pixel/voxel access to the data stored in the mapped field.

The choice of field map defines the type of reference you obtain when dereferencing an iterator or using the direct
random acccess operator [].

Typically used field maps include:

• ScalarFieldMap,

• ArrayFieldMap,

• MatrixFieldMap, and the

• T4MatrixFieldMap.

All of these are fixed size (meaning their size is set at compile time) and therefore support fast linear algebra on the
iterates. There is also a dynamically sized field map type, the TypedFieldMap which is useful for debugging and
python bindings. It supports all the features of the fixed-size maps, but linear algebra on the iterates will be slow
because it cannot be effectively vectorised.

Example 1: Iterating over fields and do math on the iterates:

The following is a code example from the tests of the finite-strain projection operator defined by T.W.J. de Geus, J.
Vondřejc, J. Zeman, R.H.J. Peerlings, M.G.D. Geers.

1 for (auto && tup :
2 akantu::zip(fields.get_pixels().template get_dimensioned_pixels<dim>(),
3 grad, var)) {
4 auto & ccoord = std::get<0>(tup); // iterate from fields
5 auto & g = std::get<1>(tup); // iterate from grad
6 auto & v = std::get<2>(tup); // iterate from var
7

8 // use iterate in arbitrary expressions
9 Vector vec = muGrid::CcoordOps::get_vector(

10 ccoord, (fix::projector.get_domain_lengths() /
11 fix::projector.get_nb_domain_grid_pts())
12 .template get<dim>());
13 // do efficient linear algebra on iterates
14 g.row(0) = k.transpose() *
15 cos(k.dot(vec)); // This is a plane wave with wave vector k in
16 // real space. A valid gradient field.
17 v.row(0) = g.row(0);
18 }

4.1. µGrid 91

https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1016/j.cma.2016.12.032

µSpectre Documentation, Release v0.1

Field Collections

Field collections come in two flavours; LocalFieldCollection<Dim> and GlobalFieldCollection<Dim> and
are templated by the spatial dimension of the problem. They adhere to the interface defined by their common base
class, FieldCollectionBase. Both types are iterable (the iterates are the coordinates of the pixels/voxels for which
the fields of the collection are defiened.

Global field collections need to be given the problem nb_grid_pts (i.e. the size of the grid) at initialisation, while local
collections need to be filled with pixels/voxels through repeated calls to add_pixel(pixel). At initialisation, they
derive their size from the number of pixels that have been added.

Fields (State Fields) are identified by their unique name (prefix) and can be retrieved in multiple ways:

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::operator[]” in doxygen xml
output for project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::at” in doxygen xml output for
project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::get_typed_field” in doxygen
xml output for project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::get_statefield” in doxygen xml
output for project “µSpectre” from directory: ./doxygenxml

Warning: doxygenfunction: Cannot find function “muGrid::FieldCollectionBase::get_typed_statefield” in doxy-
gen xml output for project “µSpectre” from directory: ./doxygenxml

State or History Variables

Some fields hold state or history variables, i.e., such fields have a current value and one or more old values. This
is particularly common for internal variables of inelastic materials (e.g., damage variables, plastic flow, e.t.c.). The
straight-forward way of handling this situation is to define a current field, and one or more fields of the same type to
hold old values. This approach has the disadvantages that it leads to a multitude of variables to keep track of, and that
the values need to by cycled between the fields using a copy; this approach is both inefficient and error-prone.

µGrid addresses this situation with the state field abstraction. A state
field is an encapsulated container of fields in a single variable. It allows to access the current field values globally,
and gives read-only access to old field values globally. Iterative per-pixel access is handled through state field
maps which, similarly to the field map, allow to iterate though all pixels/voxels on which the field is defined, and
the iterates give access to the current value at the pixel/voxel or read-only access to the old values.

92 Chapter 4. Organisation of the Code

µSpectre Documentation, Release v0.1

Mapped Fields

Some fields are only ever going to be used by one entity (e.g., internal variables of a material). For these fields, the
flexibility of the field/field collection/field map paradigm can be a burden. Mapped fields are an encapsulation of a
field and a corresponding map into a single object, drastically reducing boilerplate code.

4.1. µGrid 93

µSpectre Documentation, Release v0.1

94 Chapter 4. Organisation of the Code

CHAPTER

FIVE

CONSTITUTIVE LAWS

5.1 Generic Linear Elastic Material

The generic linear elastic material is implemented in the classes MaterialLinearElasticGeneric1 and
MaterialLinearElasticGeneric2, and is defined solely by the elastic stiffness tensor C, which has to be speci-
fied in Voigt notation. In the case of MaterialLinearElasticGeneric2, additionally, a per-pixel eigenstrain �̄� can
be supplied. The constitutive relation between the Cauchy stress 𝜎 and the small strain tensor 𝜀 is given by

𝜎 = C : 𝜀 (5.1)
𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙, for the simple version, and (5.2)
𝜎 = C : (𝜀− �̄�) (5.3)

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙 − 𝜀𝑘𝑙) for the version with eigenstrain (5.4)

This implementation is convenient, as it covers all possible linear elastic behaviours, but it is by far not as efficient as
MaterialLinearElastic1 for isotropic linear elasticity.

This law can be used in both small strain and finite strain calculations.

The following snippet shows how to use this law in python to implement isotropic linear elasticity:

5.1.1 Python Usage Example

C = np.array([[2 * mu + lam, lam, lam, 0, 0, 0],
[lam, 2 * mu + lam, lam, 0, 0, 0],
[lam, lam, 2 * mu + lam, 0, 0, 0],
[0, 0, 0, mu, 0, 0],
[0, 0, 0, 0, mu, 0],
[0, 0, 0, 0, 0, mu]])

eigenstrain = np.array([[0, .01],
[.01, 0]])

mat1 = muSpectre.material.MaterialLinearElasticGeneric1_3d.make(
cell, "material", C)

mat1.add_pixel(pixel)
mat2 = muSpectre.material.MaterialLinearElasticGeneric2_3d.make(

cell, "material", C)
mat2.add_pixel(pixel, eigenstrain)

95

https://en.wikipedia.org/wiki/Voigt_notation

µSpectre Documentation, Release v0.1

5.2 CellSplit

The implementation of split cell class is CellSplit. In order to compile this class one should set the cmake variable
SPLIT_CELL ON in the configuration.

Simulating multi-phase structures with muSpectre involves pixels which share material as they may lie in the interface
of phases. Different homogenisation schemes can be used for substituting pixels if the effective media consists of two
or more phases. One of these approximations assuming iso-strain pixels is the Voigt method. In the CellSplit pixels’
effective constitutive behavior is approximated as the weighted average of the constituent materials w.r.t their volume
fractions (𝛼)

𝑃 𝑙 = 𝑓
(︀
𝐹 𝑙

)︀
,𝑃 𝑟 = 𝑓

(︀
𝐹 𝑟

)︀
(1)

𝐹 = 𝐹 𝑟 ,𝐹 = 𝐹 𝑙 (2)
𝑃 = ⟨𝑃 ⟩ (3)

(5.5)

where

⟨𝑃 ⟩ = 𝛼𝑙𝑃 𝑙 + 𝛼𝑟𝑃 𝑟. (4)

The superscripts (𝑙) and (𝑟) show the two constituent materials of the pixel and (𝑃), (𝐹) are, respectively, first Piola-
Kirchhoff and deforamtion gradient tensors. (𝛼) is the volume fraction of the phases.The CellSplit inherits from
CellBase and can be used in its stead. Currently, all materials inheriting from MaterialMuSpectre can be added to
an instance of CellSplit. However, it should be noted that for adding pixel to the materials contained in this type of
cell, add_pixel_split() sould be employed instead of plain add_pixel_split(). This function takes the ratio of
the materials in the pixel that is being assigned to it as an input parameter. It is notable that the summation of ratio of
materials should add up to unity for all the pixels in the cell.

Specialised function make_automatic_precipitate_split_pixels() exists in CellSplit which enables user
to assign materials based on the material and geometry of precipitates (as a set of coordinates composing a poly-
heron/polygon in 3D/2D). Moreover, one can use the function complete_material_assignment() in order to as-
sign the pixels whose assignments are not completed to a specific material. The following snippet shows how one can
use the machinery to employ this specific kind of Cell in µSpectre.

5.2.1 Python Usage Example

rve = msp.Cell(res, lengths,
formulation, None, 'fftw', None,
msp.SplitCell.split)

mat1 = msp.material.MaterialLinearElastic1_2d.make(
rve, "mat1", E1, .noo1)

mat2 = msp.material.MaterialLinearElastic1_2d.make(
rve, "mat2", E2, .noo2)

points = np.ndarray(shape=(num, 2))
for j, tetha in enumerate(np.linspace(0, 2*np.pi, num, endpoint=false)):

points[j, 0] = center[0] + radius*np.cos(tetha)
points[j, 1] = center[1] + radius*np.sin(tetha)

points_list = [points.tolist()]
(continues on next page)

96 Chapter 5. Constitutive Laws

µSpectre Documentation, Release v0.1

(continued from previous page)

rve.make_precipitate(mat1, points_list)
rve.complete_material_assignemnt_simple(mat2)

5.3 Laminate Material

The generic laminate material is implemented in MaterialLaminate inheriting directly from MaterialBase, and it
contains two arbitrary underlting materials(with either linear or nonlinear constitutive laws). In order to compile this
class one should set the cmake variable SPLIT_CELL ON in the configuration.

The underlying materials behave as they consist a laminate. The resultant constitutive behavior depends on both of their
constitutive laws, the volume fraction of phases ((𝛼𝑙), (𝛼𝑟)), and the normal vector of their interface. The formulation
governing the stress and the deformation gradient of the underlying phases is given by:

𝐹 = 𝛼𝑙𝐹 𝑙 + 𝛼𝑟𝐹 𝑟 (1)

𝑃 = 𝛼𝑙𝑃 𝑙 + 𝛼𝑟𝑃 𝑟 (2)

𝑃 𝑙 · 𝑛 = 𝑃 𝑟 · 𝑛 (3)

𝐹 𝑙 ·
(︀
I− 𝑛⊗ 𝑛

)︀
= 𝐹 𝑟 ·

(︀
I− 𝑛⊗ 𝑛

)︀
(4)

where, The superscripts (𝑙) and (𝑟) show the two constituent materials of the pixel and (𝑃), (𝐹) are, respectively, first
Piola-Kirchhoff and deforamtion gradient tensors. (𝛼) is the normal vector of phases’ interface and (I) is the fourth
order identity matrix. Equations (3) and (4) are the equilibrium and the compatibility equations on the pahses’ interface
in the laminate structure. By having deformations as the input (µSpectre) and from equation (4) some components of
deforamtion of both phases are easily derived. For calculating the remaining components, it is necessary to solve
equation (3), which in the most general case is a nonlinear equation depending on both materials’ constiturive laws.
Accordingly this material’s evaluate_stress() calls an internal solver implemented in laminate_solver()where
equation (3) is solved, per-pixel, employing both underlying materials’ constitutive laws. Accordingly, this material is
not expected to be as efficient as materials inheriting from MaterialMuSpectre.

MaterialLaminate at creation only needs a name. However, its add_pixel() takes a pixel and pointers two the un-
derlying materials for each pixel as well as volume fraction and interface normal vector for each pixel. For convinience,
function make_pixels_precipitate_for_laminate_material() has been added to CellBase using which user
can add pixels to a MaterialLaminate object by introducing the shape of a precipitate, it’s material an the base ma-
terial of the matrix media in which the precipitate lies. In addition, complete_material_assignment_simple()
enables to assign the remaining of the pixles (unassigned) pixels to a material(the base material of the matrix media).The
following snippet shows how one can use the machinery to employ this specific Material in µSpectre.

5.3.1 Python Usage Example

rve = msp.Cell(res,
lengths,
formulation)

mat1_laminate = msp.material.MaterialLinearElastic1_2d.make_free(
"mat1_free", E1, noo)

mat2_laminate = msp.material.MaterialLinearElastic1_2d.make_free(
"mat2_free", E2, noo)

(continues on next page)

5.3. Laminate Material 97

µSpectre Documentation, Release v0.1

(continued from previous page)

mat1 = msp.material.MaterialLinearElastic1_2d.make(
rve, "mat1", E1, noo)

mat2 = msp.material.MaterialLinearElastic1_2d.make(
rve, "mat2", E2, noo)

mat_lam = msp.material.MaterialLaminate_2d.make(rve, "laminate")

points = np.ndarray(shape=(num, 2))
for j, tetha in enumerate(np.linspace(0, 2*np.pi, num, endpoint=false)):

points[j, 0] = center[0] + radius*np.cos(tetha)
points[j, 1] = center[1] + radius*np.sin(tetha)

points_list = [points.tolist()]

rve.make_precipitate_laminate(mat_lam, mat1,
mat1_laminate,
mat2_laminate,
points_list)

rve.complete_material_assignemnt_simple(mat2)

98 Chapter 5. Constitutive Laws

CHAPTER

SIX

TESTING CONSTITUTIVE LAWS

When writing new constitutive laws, the ability to evaluate the stress-strain behaviour and the tangent moduli is con-
venient, but µSpectre’s material model makes it cumbersome to isolate and execute the evaluate_stress() and
evaluate_stress_tangent() methods than any daughter class of MaterialMuSpectre must implement (e.g.,
evaluate_stress()). As a helper object, µSpectre offers the class MaterialEvaluator to facilitate precisely this:

A MaterialEvaluator object can be constructed with a shared pointer to a MaterialBase and exposes
functions to evaluate just the stress, both the stress and tangent moduli, or a numerical approximation to
the tangent moduli. For materials with internal history variables, MaterialEvaluator also exposes the
MaterialBase::save_history_variables() method. As a convenience function, all daughter classes of
MaterialMuSpectre have the static factory function make_evaluator() to create a material and its evaluator at
once. See the Reference for the full class description.

6.1 Python Usage Example

import numpy as np
from muSpectre import material
from muSpectre import Formulation

MaterialLinearElastic1 is standard linear elasticity while
MaterialLinearElastic2 has a per pixel eigenstrain which needs to be set
LinMat1, LinMat2 = (material.MaterialLinearElastic1_2d,

material.MaterialLinearElastic2_2d)

young, poisson = 210e9, .33

the factory returns a material and it's corresponding evaluator
material1, evaluator1 = LinMat1.make_evaluator(young, poisson)

the material is empty (i.e., does not have any pixel/voxel), so a pixel
needs to be added. The coordinates are irrelevant, there just needs to
be one pixel.
material1.add_pixel([0,0])

the stress and tangent can be evaluated for finite strain
F = np.array([[1., .01],[0, 1.0]])
P, K = evaluator1.evaluate_stress_tangent(F, Formulation.finite_strain)
or small strain
eps = .5 * ((F-np.eye(2)) + (F-np.eye(2)).T)
sigma, C = evaluator1.evaluate_stress_tangent(eps, Formulation.small_strain)

(continues on next page)

99

µSpectre Documentation, Release v0.1

(continued from previous page)

and the tangent can be checked against a numerical approximation
Delta_x = 1e-6
num_C = evaluator1.estimate_tangent(eps, Formulation.small_strain, Delta_x)

Materials with per-pixel data behave similarly: the factory returns a
material and it's corresponding evaluator like before
material2, evaluator2 = LinMat2.make_evaluator(young, poisson)

when adding the pixel, we now need to specify also the per-pixel data:
eigenstrain = np.array([[.01, .002], [.002, 0.]])
material2.add_pixel([0,0], eigenstrain)

6.2 C++ Usage Example

#include"materials/material_linear_elastic2.hh"
#include "materials/material_evaluator.hh"
#include <libmugrid/T4_map_proxy.hh>

#include "Eigen/Dense"

using Mat_t = MaterialLinearElastic2<twoD, twoD>;

constexpr Real Young{210e9};
constexpr Real Poisson{.33};

auto mat_eval{Mat_t::make_evaluator(Young, Poisson)};
auto & mat{*std::get<0>(mat_eval)};
auto & evaluator{std::get<1>(mat_eval)};

using T2_t = Eigen::Matrix<Real, twoD, twoD>;
using T4_t = T4Mat<Real, twoD>;
const T2_t F{(T2_t::Random() - (T2_t::Ones() * .5)) * 1e-4 +

T2_t::Identity()};

T2_t eigen_strain{[](auto x) {
return 1e-4 * (x + x.transpose());

}(T2_t::Random() - T2_t::Ones() * .5)};

mat.add_pixel({}, eigen_strain);

T2_t P{};
T4_t K{};

std::tie(P, K) =
evaluator.evaluate_stress_tangent(F, Formulation::finite_strain);

100 Chapter 6. Testing Constitutive Laws

CHAPTER

SEVEN

REFERENCE

template<class T>

class ArangeContainer
#include <iterators.hh> helper class to generate range iterators

Public Types

using iterator = iterators::ArangeIterator<T>
undocumented

Public Functions

inline constexpr ArangeContainer(T start, T stop, T step = 1)
undocumented

inline explicit constexpr ArangeContainer(T stop)
undocumented

inline constexpr T operator[](size_t i)
undocumented

inline constexpr T size()
undocumented

inline constexpr iterator begin()
undocumented

inline constexpr iterator end()
undocumented

101

µSpectre Documentation, Release v0.1

Private Members

const T start = {0}

const T stop = {0}

const T step = {1}

template<class T>

class ArangeIterator
#include <iterators.hh> emulates python’s range iterator

Public Types

using value_type = T
undocumented

using pointer = T*
undocumented

using reference = T&
undocumented

using iterator_category = std::input_iterator_tag
undocumented

Public Functions

inline constexpr ArangeIterator(T value, T step)
undocumented

constexpr ArangeIterator(const ArangeIterator&) = default
undocumented

inline constexpr ArangeIterator &operator++()
undocumented

inline constexpr const T &operator*() const
undocumented

inline constexpr bool operator==(const ArangeIterator &other) const
undocumented

inline constexpr bool operator!=(const ArangeIterator &other) const
undocumented

102 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Private Members

T value = {0}

const T step = {1}

template<Dim_t order, typename Fun_t, Dim_t dim, Dim_t... args>

struct CallSizesHelper
#include <eigen_tools.hh> Call a passed lambda with the unpacked sizes as arguments.

Public Static Functions

static inline decltype(auto) call(Fun_t &&fun)
applies the call

template<typename Fun_t, Dim_t dim, Dim_t... args>

struct CallSizesHelper<0, Fun_t, dim, args...>
#include <eigen_tools.hh> Call a passed lambda with the unpacked sizes as arguments.

Public Static Functions

static inline decltype(auto) call(Fun_t &&fun)
applies the call

class Cell
#include <cell.hh> Base class for the representation of a homogenisatonion problem in µSpectre. The
muSpectre::Cell holds the global strain, stress and (optionally) tangent moduli fields of the problem, main-
tains the list of materials present, as well as the projection operator.

Subclassed by muSpectre::CellSplit

Public Types

using Material_ptr = std::unique_ptr<MaterialBase>
materials handled through std::unique_ptrs

using Material_sptr = std::shared_ptr<MaterialBase>

using Projection_ptr = std::unique_ptr<ProjectionBase>
projections handled through std::unique_ptrs

using Matrix_t = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>
short-hand for matrices

using Eigen_cmap = muGrid::RealField::Eigen_cmap
ref to constant vector

103

µSpectre Documentation, Release v0.1

using Eigen_map = muGrid::RealField::Eigen_map
ref to vector

using EigenVec_t = Eigen::Ref<Eigen::Matrix<Real, Eigen::Dynamic, 1>>
Ref to input/output vector.

using EigenCVec_t = Eigen::Ref<const Eigen::Matrix<Real, Eigen::Dynamic, 1>>
Ref to input vector.

using Adaptor = CellAdaptor<Cell>
adaptor to represent the cell as an Eigen sparse matrix

Public Functions

Cell() = delete
Deleted default constructor.

explicit Cell(Projection_ptr projection, SplitCell is_cell_split = SplitCell::no)
Constructor from a projection operator.

Cell(const Cell &other) = delete
Copy constructor.

Cell(Cell &&other) = default
Move constructor.

virtual ~Cell() = default
Destructor.

Cell &operator=(const Cell &other) = delete
Copy assignment operator.

Cell &operator=(Cell &&other) = delete
Move assignment operator.

bool is_initialised() const
for handling double initialisations right

Dim_t get_nb_dof() const
returns the number of degrees of freedom in the cell

size_t get_nb_pixels() const
number of pixels on this processor

const muFFT ::Communicator &get_communicator() const
return the communicator object

const Formulation &get_formulation() const
formulation is hard set by the choice of the projection class

Dim_t get_material_dim() const
returns the material dimension of the problem

104 Chapter 7. Reference

µSpectre Documentation, Release v0.1

void set_uniform_strain(const Eigen::Ref<const Matrix_t>&)

set uniform strain (typically used to initialise problems

virtual MaterialBase &add_material(Material_ptr mat)
add a new material to the cell

void complete_material_assignment_simple(MaterialBase &material)
By taking a material as input this function assigns all the untouched(not-assigned) pixels to that material

void make_pixels_precipitate_for_laminate_material(const std::vector<DynRcoord_t>
&precipitate_vertices, MaterialBase
&mat_laminate, MaterialBase
&mat_precipitate_cell, Material_sptr
mat_precipitate, Material_sptr mat_matrix)

Given the vertices of polygonal/Polyhedral precipitate, this function assign pixels 1. inside precipitate-
>mat_precipitate_cell, material at the interface of precipitae-> to mat_precipitate & mat_matrix according
to the intersection of pixels with the precipitate

template<Dim_t Dim>
void make_pixels_precipitate_for_laminate_material_helper(const std::vector<DynRcoord_t>

&precipitate_vertices, MaterialBase
&mat_laminate, MaterialBase
&mat_precipitate_cell,
Material_sptr mat_precipitate,
Material_sptr mat_matrix)

Adaptor get_adaptor()
get a sparse matrix view on the cell

void save_history_variables()
freezes all the history variables of the materials

std::array<Dim_t, 2> get_strain_shape() const
returns the number of rows and cols for the strain matrix type (for full storage, the strain is stored in mate-
rial_dim × material_dim matrices, but in symmetric storage, it is a column vector)

Dim_t get_strain_size() const
returns the number of components for the strain matrix type (for full storage, the strain is stored in mate-
rial_dim × material_dim matrices, but in symmetric storage, it is a column vector)

const Dim_t &get_spatial_dim() const
return the spatial dimension of the discretisation grid

const Dim_t &get_nb_quad() const
return the number of quadrature points stored per pixel

virtual void check_material_coverage() const
makes sure every pixel has been assigned to exactly one material

void initialise(muFFT ::FFT_PlanFlags flags = muFFT ::FFT_PlanFlags::estimate)
initialise the projection, the materials and the global fields

const muGrid::CcoordOps::DynamicPixels &get_pixels() const
return a const reference to the grids pixels iterator

muGrid::FieldCollection::IndexIterable get_quad_pt_indices() const
return an iterable proxy to this cell’s field collection, iterable by quadrature point

105

µSpectre Documentation, Release v0.1

muGrid::FieldCollection::PixelIndexIterable get_pixel_indices() const
return an iterable proxy to this cell’s field collection, iterable by pixel

muGrid::RealField &get_strain()
return a reference to the cell’s strain field

const muGrid::RealField &get_stress() const
return a const reference to the cell’s stress field

const muGrid::RealField &get_tangent(bool do_create = false)
return a const reference to the cell’s field of tangent moduli

virtual const muGrid::RealField &evaluate_stress()
evaluates and returns the stress for the currently set strain

Eigen_cmap evaluate_stress_eigen()
evaluates and returns the stress for the currently set strain

virtual std::tuple<const muGrid::RealField&, const muGrid::RealField&> evaluate_stress_tangent()
evaluates and returns the stress and tangent moduli for the currently set strain

std::tuple<const Eigen_cmap, const Eigen_cmap> evaluate_stress_tangent_eigen()
evaluates and returns the stress and tangent moduli for the currently set strain

muGrid::RealField &globalise_real_internal_field(const std::string &unique_name)
collect the real-valued fields of name unique_name of each material in the cell and write their values into
a global field of same type and name

muGrid::IntField &globalise_int_internal_field(const std::string &unique_name)
collect the integer-valued fields of name unique_name of each material in the cell and write their values
into a global field of same type and name

muGrid::UintField &globalise_uint_internal_field(const std::string &unique_name)
collect the unsigned integer-valued fields of name unique_name of each material in the cell and write their
values into a global field of same type and name

muGrid::ComplexField &globalise_complex_internal_field(const std::string &unique_name)
collect the complex-valued fields of name unique_name of each material in the cell and write their values
into a global field of same type and name

muGrid::GlobalFieldCollection &get_fields()
return a reference to the cell’s global fields

void apply_projection(muGrid::TypedFieldBase<Real> &field)
apply the cell’s projection operator to field field (i.e., return G:f)

void evaluate_projected_directional_stiffness(const muGrid::TypedFieldBase<Real>
&delta_strain, muGrid::TypedFieldBase<Real>
&del_stress)

evaluates the directional and projected stiffness (this corresponds to G:K:F (note the negative sign in de
Geus 2017, http://dx.doi.org/10.1016/j.cma.2016.12.032).

void add_projected_directional_stiffness(EigenCVec_t delta_strain, const Real &alpha, EigenVec_t
del_stress)

evaluates the directional and projected stiffness (this corresponds to G:K:F (note the negative sign in
de Geus 2017, http://dx.doi.org/10.1016/j.cma.2016.12.032). and then adds it do the values already in
del_stress, scaled by alpha (i.e., del_stress += alpha*Q:K:Strain. This function should not be used directly,

106 Chapter 7. Reference

http://dx.doi.org/10.1016/j.cma.2016.12.032
http://dx.doi.org/10.1016/j.cma.2016.12.032

µSpectre Documentation, Release v0.1

as it does absolutely no input checking. Rather, it is meant to be called by the scaleAndAddTo function in
the CellAdaptor

inline SplitCell get_splitness() const
transitional function, use discouraged

const ProjectionBase &get_projection() const
return a const ref to the projection implementation

bool is_point_inside(const DynRcoord_t &point) const
check if the pixel is inside of the cell

bool is_pixel_inside(const DynCcoord_t &pixel) const
check if the point is inside of the cell

Protected Functions

template<typename T>
muGrid::TypedField<T> &globalise_internal_field(const std::string &unique_name)

helper function for the globalise_<T>_internal_field() functions

Protected Attributes

bool initialised = {false}
to handle double initialisations right

std::vector<Material_ptr> materials = {}
container of the materials present in the cell

Projection_ptr projection
handle for the projection operator

std::unique_ptr<muGrid::GlobalFieldCollection> fields
handle for the global fields associated with this cell

muGrid::RealField &strain
ref to strain field

muGrid::RealField &stress
ref to stress field

optional<std::reference_wrapper<muGrid::RealField>> tangent = {}
Tangent field might not even be required; so this is an optional ref_wrapper instead of a ref

SplitCell is_cell_split = {SplitCell::no}

107

µSpectre Documentation, Release v0.1

Protected Static Functions

template<Dim_t DimM>
static void apply_directional_stiffness(const muGrid::TypedFieldBase<Real> &delta_strain, const

muGrid::TypedFieldBase<Real> &tangent,
muGrid::TypedFieldBase<Real> &delta_stress)

statically dimensioned worker for evaluating the tangent operator

template<Dim_t DimM>
static void add_projected_directional_stiffness_helper(const muGrid::TypedFieldBase<Real>

&delta_strain, const
muGrid::TypedFieldBase<Real> &tangent,
const Real &alpha,
muGrid::TypedFieldBase<Real>
&delta_stress)

statically dimensioned worker for evaluating the incremental tangent operator

template<class Cell>

class CellAdaptor : public Eigen::EigenBase<CellAdaptor<Cell>>
#include <cell.hh> Cell adaptors implement the matrix-vector multiplication and allow the system to be used
like a sparse matrix in conjugate-gradient-type solvers

lightweight resource handle wrapping a muSpectre::Cell or a subclass thereof into Eigen::EigenBase, so
it can be interpreted as a sparse matrix by Eigen solvers

Public Types

enum [anonymous]
Values:

enumerator ColsAtCompileTime

enumerator MaxColsAtCompileTime

enumerator RowsAtCompileTime

enumerator MaxRowsAtCompileTime

enumerator IsRowMajor

using Scalar = double
sparse matrix traits

using RealScalar = double
sparse matrix traits

using StorageIndex = int
sparse matrix traits

108 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

inline explicit CellAdaptor(Cell &cell)
constructor

inline Eigen::Index rows() const
returns the number of logical rows

inline Eigen::Index cols() const
returns the number of logical columns

template<typename Rhs>
inline Eigen::Product<CellAdaptor, Rhs, Eigen::AliasFreeProduct> operator*(const

Eigen::MatrixBase<Rhs>
&x) const

implementation of the evaluation

Public Members

Cell &cell
ref to the cell

class CellSplit : public muSpectre::Cell
#include <cell_split.hh> DimS spatial dimension (dimension of problem DimM material_dimension (dimension
of constitutive law)

Public Types

using Parent = Cell
base class

using Projection_ptr = std::unique_ptr<ProjectionBase>
projections handled through std::unique_ptrs

using FullResponse_t = std::tuple<const muGrid::RealField&, const muGrid::RealField&>
combined stress and tangent field

Public Functions

CellSplit() = delete
Default constructor.

explicit CellSplit(Projection_ptr projection)
constructor using sizes and resolution

CellSplit(const CellSplit &other) = delete
Copy constructor.

109

µSpectre Documentation, Release v0.1

CellSplit(CellSplit &&other) = default
Move constructor.

virtual ~CellSplit() = default
Destructor.

CellSplit &operator=(const CellSplit &other) = delete
Copy assignment operator.

CellSplit &operator=(CellSplit &&other) = delete
Move assignment operator.

virtual MaterialBase &add_material(Material_ptr mat) final
add a new material to the cell

void complete_material_assignment(MaterialBase &material)
completes the assignmnet of material with a specific material so all the under-assigned pixels would be
assigned to a material.

std::vector<Real> get_assigned_ratios()

void make_automatic_precipitate_split_pixels(const std::vector<DynRcoord_t>
&preciptiate_vertices, MaterialBase &material)

std::vector<Real> get_unassigned_ratios_incomplete_pixels() const

std::vector<int> get_index_incomplete_pixels() const

std::vector<DynCcoord_t> get_unassigned_pixels()

IncompletePixels make_incomplete_pixels()

virtual void check_material_coverage() const final
makes sure every pixel has been assigned to materials whose ratios add up to 1.0

virtual const muGrid::RealField &evaluate_stress() final
evaluates and returns the stress for the currently set strain

virtual std::tuple<const muGrid::RealField&, const muGrid::RealField&> evaluate_stress_tangent()
final

evaluates and returns the stress and tangent moduli for the currently set strain

Protected Functions

void set_p_k_zero()

Friends

friend class Cell

class Communicator
#include <communicator.hh> stub communicator object that doesn’t communicate anything

110 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

inline Communicator()

inline ~Communicator()

inline int rank() const
get rank of present process

inline int size() const
get total number of processes

template<typename T>
inline T sum(const T &arg) const

sum reduction on scalar types

template<typename T>
inline Matrix_t<T> sum_mat(const Eigen::Ref<Matrix_t<T>> &arg) const

sum reduction on EigenMatrix types

template<typename T>
inline Matrix_t<T> gather(const Eigen::Ref<Matrix_t<T>> &arg) const

gather on EigenMatrix types

template<typename T>
auto sum_mat(const Eigen::Ref<Matrix_t<T>> &arg) const -> Matrix_t<T>

sum reduction on EigenMatrix types

template<typename T>
auto gather(const Eigen::Ref<Matrix_t<T>> &arg) const -> Matrix_t<T>

gather on EigenMatrix types

Public Static Functions

static inline bool has_mpi()
find whether the underlying communicator is mpi

class ConvergenceError : public muSpectre::SolverError

template<ElasticModulus Out, ElasticModulus In1, ElasticModulus In2>

struct Converter
#include <materials_toolbox.hh> Base template for elastic modulus conversion.

Public Static Functions

static inline constexpr Real compute(const Real&, const Real&)

wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::Bulk, ElasticModulus::lambda, ElasticModulus::Shear>
#include <materials_toolbox.hh> Specialisation K(, µ)

111

µSpectre Documentation, Release v0.1

Public Static Functions

static inline constexpr Real compute(const Real &lambda, const Real &G)

wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::Bulk, ElasticModulus::Young, ElasticModulus::Poisson>
#include <materials_toolbox.hh> Specialisation K(E,)

Public Static Functions

static inline constexpr Real compute(const Real &E, const Real &nu)
wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::lambda, ElasticModulus::Bulk, ElasticModulus::Shear>
#include <materials_toolbox.hh> Specialisation (K, µ)

Public Static Functions

static inline constexpr Real compute(const Real &K, const Real &mu)
wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::lambda, ElasticModulus::Young, ElasticModulus::Poisson>
#include <materials_toolbox.hh> Specialisation (E,)

Public Static Functions

static inline constexpr Real compute(const Real &E, const Real &nu)
wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::Poisson, ElasticModulus::Bulk, ElasticModulus::Shear>
#include <materials_toolbox.hh> Specialisation (K, µ)

Public Static Functions

static inline constexpr Real compute(const Real &K, const Real &G)

wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::Shear, ElasticModulus::Young, ElasticModulus::Poisson>
#include <materials_toolbox.hh> Specialisation (E,)

112 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

static inline constexpr Real compute(const Real &E, const Real &nu)
wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::Young, ElasticModulus::Bulk, ElasticModulus::Shear>
#include <materials_toolbox.hh> Specialisation E(K, µ)

Public Static Functions

static inline constexpr Real compute(const Real &K, const Real &G)

wrapped function (raison d’être)

template<>

struct Converter<ElasticModulus::Young, ElasticModulus::lambda, ElasticModulus::Shear>
#include <materials_toolbox.hh> Specialisation E(, µ)

Public Static Functions

static inline constexpr Real compute(const Real &lambda, const Real &G)

wrapped function (raison d’être)

template<ElasticModulus Out, ElasticModulus In>

struct Converter<Out, In, Out>
#include <materials_toolbox.hh> Spectialisation for when the output is the second input

Public Static Functions

static inline constexpr Real compute(const Real&, const Real &B)
wrapped function (raison d’être)

template<ElasticModulus Out, ElasticModulus In>

struct Converter<Out, Out, In>
#include <materials_toolbox.hh> Spectialisation for when the output is the first input

Public Static Functions

static inline constexpr Real compute(const Real &A, const Real&)

wrapped function (raison d’être)

template<StrainMeasure In, StrainMeasure Out = In>

struct ConvertStrain
#include <materials_toolbox.hh> Structure for functions returning one strain measure as a function of another

113

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t>
static inline decltype(auto) compute(Strain_t &&input)

returns the converted strain

template<>

struct ConvertStrain<StrainMeasure::Gradient, StrainMeasure::GreenLagrange>
#include <materials_toolbox.hh> Specialisation for getting Green-Lagrange strain from the transformation gra-
dient E = 1/2 (C - I) = 1/2 (F·F - I)

Public Static Functions

template<class Strain_t>
static inline decltype(auto) compute(Strain_t &&F)

returns the converted strain

template<>

struct ConvertStrain<StrainMeasure::Gradient, StrainMeasure::LCauchyGreen>
#include <materials_toolbox.hh> Specialisation for getting Left Cauchy-Green strain from the transformation
gradient B = F·F = V2

Public Static Functions

template<class Strain_t>
static inline decltype(auto) compute(Strain_t &&F)

returns the converted strain

template<>

struct ConvertStrain<StrainMeasure::Gradient, StrainMeasure::Log>
#include <materials_toolbox.hh> Specialisation for getting logarithmic (Hencky) strain from the transformation
gradient E0 = 1/2 ln C = 1/2 ln (F·F)

Public Static Functions

template<class Strain_t>
static inline decltype(auto) compute(Strain_t &&F)

returns the converted strain

template<>

struct ConvertStrain<StrainMeasure::Gradient, StrainMeasure::RCauchyGreen>
#include <materials_toolbox.hh> Specialisation for getting Right Cauchy-Green strain from the transformation
gradient C = F·F = U2

114 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t>
static inline decltype(auto) compute(Strain_t &&F)

returns the converted strain

template<Dim_t DimS>

class Correction

Public Static Functions

static Rcoord_t<3> correct_origin(const Rcoord_t<DimS> &array)

static Rcoord_t<3> correct_length(const Rcoord_t<DimS> &array)

static std::vector<Rcoord_t<3>> correct_vector(const std::vector<Rcoord_t<DimS>> &vector)

template<>

class Correction<2>

Public Static Functions

static inline std::vector<Rcoord_t<3>> correct_vector(const std::vector<Rcoord_t<2>> &vertices)

static inline Rcoord_t<3> correct_origin(const Rcoord_t<2> &array)

static inline Rcoord_t<3> correct_length(const Rcoord_t<2> &array)

template<>

class Correction<3>

Public Static Functions

static inline Rcoord_t<3> correct_origin(const Rcoord_t<3> &array)

static inline Rcoord_t<3> correct_length(const Rcoord_t<3> &array)

static inline std::vector<Rcoord_t<3>> correct_vector(const std::vector<Rcoord_t<3>> &vertices)

template<Dim_t Dim>

struct DefaultOrder
#include <geometry.hh> convenience structure providing the default order of rotations around (in order) the z,
x, and y axis

115

µSpectre Documentation, Release v0.1

Public Static Attributes

static constexpr RotationOrder value = {RotationOrder::ZXYTaitBryan}
holds the value of the rotation order

template<>

struct DefaultOrder<twoD>
#include <geometry.hh> specialisation for two-dimensional problems

Public Static Attributes

static constexpr RotationOrder value = {RotationOrder::Z}
holds the value of the rotation order

class DerivativeBase
#include <derivative.hh> Representation of a derivative

Subclassed by muFFT::DiscreteDerivative, muFFT::FourierDerivative

Public Types

using Vector = Eigen::Matrix<Real, Eigen::Dynamic, 1>
convenience alias

Public Functions

DerivativeBase() = delete
Deleted default constructor.

explicit DerivativeBase(Dim_t spatial_dimension)
constructor with spatial dimension

DerivativeBase(const DerivativeBase &other) = default
Copy constructor.

DerivativeBase(DerivativeBase &&other) = default
Move constructor.

virtual ~DerivativeBase() = default
Destructor.

DerivativeBase &operator=(const DerivativeBase &other) = delete
Copy assignment operator.

DerivativeBase &operator=(DerivativeBase &&other) = delete
Move assignment operator.

virtual Complex fourier(const Vector &phase) const = 0
Return Fourier representation of the derivative as a function of the phase. The phase is the wavevector
times cell dimension, but lacking a factor of 2 .

116 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Attributes

Dim_t spatial_dimension
spatial dimension of the problem

class DerivativeError : public runtime_error
#include <derivative.hh> base class for projection related exceptions

Public Functions

inline explicit DerivativeError(const std::string &what)
constructor

inline explicit DerivativeError(const char *what)
constructor

template<class Derived>

struct DimCounter

template<class Derived>

struct DimCounter<Eigen::MatrixBase<Derived>>
#include <T4_map_proxy.hh> Convenience structure to determine the spatial dimension of a tensor represented
by a fixed-size Eigen::Matrix. used to derive spatial dimension from input arguments of template functions
thus avoiding the need for redundant explicit specification.

Public Static Attributes

static constexpr Dim_t value = {ct_sqrt(Rows)}
storage for the dimension

Private Types

using Type = Eigen::MatrixBase<Derived>

Private Static Attributes

static constexpr Dim_t Rows = {Type::RowsAtCompileTime}

class DiscreteDerivative : public muFFT ::DerivativeBase
#include <derivative.hh> Representation of a finite-differences stencil

117

µSpectre Documentation, Release v0.1

Public Types

using Parent = DerivativeBase
base class

using Vector = typename Parent::Vector
convenience alias

Public Functions

DiscreteDerivative() = delete
Default constructor.

DiscreteDerivative(DynCcoord_t nb_pts, DynCcoord_t lbounds, const std::vector<Real> &stencil)
Constructor with raw stencil information

Parameters
• nb_pts – stencil size

• lbounds – relative starting point of stencil

• stencil – stencil coefficients

DiscreteDerivative(DynCcoord_t nb_pts, DynCcoord_t lbounds, const Eigen::ArrayXd &stencil)
Constructor with raw stencil information.

DiscreteDerivative(const DiscreteDerivative &other) = default
Copy constructor.

DiscreteDerivative(DiscreteDerivative &&other) = default
Move constructor.

virtual ~DiscreteDerivative() = default
Destructor.

DiscreteDerivative &operator=(const DiscreteDerivative &other) = delete
Copy assignment operator.

DiscreteDerivative &operator=(DiscreteDerivative &&other) = delete
Move assignment operator.

inline Real operator()(const DynCcoord_t &dcoord) const
Return stencil value.

inline const DynCcoord_t &get_nb_pts() const
Return number of grid points in stencil.

inline const DynCcoord_t &get_lbounds() const
Return lower stencil bound.

inline virtual Complex fourier(const Vector &phase) const
Any translationally invariant linear combination of grid values (as expressed through a “stencil”) becomes
a multiplication with a number in Fourier space. This method returns the Fourier representation of this
stencil.

118 Chapter 7. Reference

µSpectre Documentation, Release v0.1

DiscreteDerivative rollaxes(int distance = 1) const
Return a new stencil rolled axes. Given a stencil on a three-dimensional grid with axes (x, y, z), the stencil
that has been “rolled” by distance one has axes (z, x, y). This is a simple implementation of a rotation
operation. For example, given a stencil that described the derivative in the x-direction, rollaxes(1) gives
the derivative in the y-direction and rollaxes(2) gives the derivative in the z-direction.

Protected Attributes

const DynCcoord_t nb_pts
Number of stencil points.

const DynCcoord_t lbounds
Lower bound of the finite-differences stencil.

const Eigen::ArrayXd stencil
Finite-differences stencil.

template<Dim_t Dim, Dim_t Rank1, Dim_t Rank2>

struct Dotter

template<Dim_t Dim>

struct Dotter<Dim, fourthOrder, fourthOrder>
#include <tensor_algebra.hh> Double contraction between two fourth-rank tensors A and B returns a fourth-rank
tensor C = A·B

Public Static Functions

template<class T1, class T2>
static inline decltype(auto) constexpr ddot(T1 &&t1, T2 &&t2)

raison d’être

template<Dim_t Dim>

struct Dotter<Dim, fourthOrder, secondOrder>
#include <tensor_algebra.hh> Tensor-product between a fourth-rank tensor A and a second-rank tensor B. Re-
turns a fourth-rank C = A·B

Public Static Functions

template<class T4, class T2>
static inline decltype(auto) constexpr dot(T4 &&t4, T2 &&t2)

raison d’être

template<Dim_t Dim>

struct Dotter<Dim, secondOrder, fourthOrder>
#include <tensor_algebra.hh> Tensor-product between a second-rank tensor A and a fourth-rank tensor B. Re-
turns a fourth-rank C = A·B

119

µSpectre Documentation, Release v0.1

Public Static Functions

template<class T1, class T2>
static inline decltype(auto) constexpr dot(T1 &&t1, T2 &&t2)

raison d’être

template<Dim_t Dim>

struct Dotter<Dim, secondOrder, secondOrder>
#include <tensor_algebra.hh> Double contraction between two second-rank tensors A and B returns a scalar c
= AB

Public Static Functions

template<class T1, class T2>
static inline decltype(auto) constexpr ddot(T1 &&t1, T2 &&t2)

raison d’être

class DynamicPixels
#include <ccoord_operations.hh> Iteration over square (or cubic) discretisation grids. Duplicates capabilities of
muGrid::Ccoordops::Pixels without needing to be templated with the spatial dimension. Iteration is slower,
though.

Subclassed by muGrid::CcoordOps::Pixels< Dim >

Public Functions

DynamicPixels()

explicit DynamicPixels(const DynCcoord_t &nb_grid_pts, const DynCcoord_t &locations =
DynCcoord_t{})

Constructor with default strides (column-major pixel storage order)

DynamicPixels(const DynCcoord_t &nb_grid_pts, const DynCcoord_t &locations, const DynCcoord_t
&strides)

Constructor with custom strides (any, including partially transposed pixel storage order)

template<size_t Dim>
explicit DynamicPixels(const Ccoord_t<Dim> &nb_grid_pts, const Ccoord_t<Dim> &locations =

Ccoord_t<Dim>{})
Constructor with default strides from statically sized coords.

template<size_t Dim>
DynamicPixels(const Ccoord_t<Dim> &nb_grid_pts, const Ccoord_t<Dim> &locations, const

Ccoord_t<Dim> &strides)
Constructor with custom strides from statically sized coords.

DynamicPixels(const DynamicPixels &other) = default
Copy constructor.

DynamicPixels(DynamicPixels &&other) = default
Move constructor.

120 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual ~DynamicPixels() = default
Destructor.

DynamicPixels &operator=(const DynamicPixels &other) = default
Copy assignment operator.

DynamicPixels &operator=(DynamicPixels &&other) = default
Move assignment operator.

inline Dim_t get_index(const DynCcoord_t &ccoord) const
evaluate and return the linear index corresponding to dynamic ccoord

template<size_t Dim>
inline Dim_t get_index(const Ccoord_t<Dim> &ccoord) const

evaluate and return the linear index corresponding to ccoord

template<size_t Dim>
const Pixels<Dim> &get_dimensioned_pixels() const

return a reference to the Pixels object cast into a statically dimensioned grid. the statically dimensioned ver-
sion duplicates muGrid::Ccoordops::DynamicPixels’s capabilities, but iterates much more efficiently.

iterator begin() const
stl conformance

iterator end() const
stl conformance

size_t size() const
stl conformance

inline const Dim_t &get_dim() const
return spatial dimension

inline const DynCcoord_t &get_nb_grid_pts() const
return the resolution of the discretisation grid in each spatial dim

inline const DynCcoord_t &get_locations() const
return the ccoordinates of the bottom, left, (front) pixel/voxel of this processors partition of the discretisation
grid. For sequential calculations, this is alvays the origin

inline const DynCcoord_t &get_strides() const
return the strides used for iterating over the pixels

Enumerator enumerate() const
iterates in tuples of pixel index ond coordinate. Useful in parallel problems, where simple enumeration of
the pixels would be incorrect

Protected Attributes

Dim_t dim
spatial dimension

DynCcoord_t nb_grid_pts
nb_grid_pts of this domain

121

µSpectre Documentation, Release v0.1

DynCcoord_t locations
locations of this domain

DynCcoord_t strides
strides of memory layout

template<size_t MaxDim, typename T = Dim_t>

class DynCcoord
#include <grid_common.hh> Class to represent integer (cell-) coordinates or real-valued coordinates. This class
can dynamically accept any spatial-dimension between 1 and MaxDim, and DynCcoord references can be cast to
muGrid::Ccoord_t & or muGrid::Rcoord_t & references. These are used when templating with the spatial
dimension of the problem is undesireable/impossible.

Public Types

using iterator = typename std::array<T , MaxDim>::iterator
iterator type

using const_iterator = typename std::array<T , MaxDim>::const_iterator
constant iterator type

Public Functions

inline DynCcoord()
default constructor

inline DynCcoord(std::initializer_list<T> init_list)
constructor from an initialiser list for compound initialisation.

Parameters
init_list – The length of the initialiser list becomes the spatial dimension of the coordinate,
therefore the list must have a length between 1 and MaxDim

inline explicit DynCcoord(Dim_t dim)

Constructor only setting the dimension. WARNING: This constructor needs regular (round) braces ‘()’,
using curly braces ‘{}’ results in the initialiser list constructor being called and creating a DynCcoord with
spatial dimension 1

Parameters
dim – spatial dimension. Needs to be between 1 and MaxDim

template<size_t Dim>
inline explicit DynCcoord(const std::array<T , Dim> &ccoord)

Constructor from a statically sized coord.

inline explicit DynCcoord(const std::vector<T> &ccoord)

DynCcoord(const DynCcoord &other) = default
Copy constructor.

122 Chapter 7. Reference

µSpectre Documentation, Release v0.1

DynCcoord(DynCcoord &&other) = default
Move constructor.

~DynCcoord() = default
nonvirtual Destructor

template<size_t Dim>
inline DynCcoord &operator=(const std::array<T , Dim> &ccoord)

Assign arrays.

DynCcoord &operator=(const DynCcoord &other) = default
Copy assignment operator.

DynCcoord &operator=(DynCcoord &&other) = default
Move assignment operator.

template<size_t Dim2>
inline bool operator==(const std::array<T , Dim2> &other) const

comparison operator

inline bool operator==(const DynCcoord &other) const
comparison operator

template<typename T2>
inline DynCcoord<MaxDim, decltype(T{} / T2{})> operator/(const DynCcoord<MaxDim, T2> &other)

const
element-wise division

inline T &operator[](const size_t &index)
access operator

inline const T &operator[](const size_t &index) const
access operator

template<size_t Dim>
inline operator std::array<T, Dim>() const

conversion operator

template<Dim_t Dim>
inline std::array<T , Dim> &get()

cast to a reference to a statically sized array

template<Dim_t Dim>
inline const std::array<T , Dim> &get() const

cast to a const reference to a statically sized array

inline const Dim_t &get_dim() const
return the spatial dimension of this coordinate

inline iterator begin()
iterator to the first entry for iterating over only the valid entries

inline iterator end()
iterator past the dim-th entry for iterating over only the valid entries

inline const_iterator begin() const
const iterator to the first entry for iterating over only the valid entries

123

µSpectre Documentation, Release v0.1

inline const_iterator end() const
const iterator past the dim-th entry for iterating over only the valid entries

inline T *data()
return the underlying data pointer

inline const T *data() const
return the underlying data pointer

inline T &back()
return a reference to the last valid entry

inline const T &back() const
return a const reference to the last valid entry

Protected Attributes

Dim_t dim
spatial dimension of the coordinate

std::array<T , MaxDim> long_array
storage for coordinate components

Private Functions

template<size_t Dim>
inline constexpr std::array<T , MaxDim> fill_front(const std::array<T , Dim> &ccoord)

Private Static Functions

template<size_t Dim, size_t... Indices>
static inline constexpr std::array<T , MaxDim> fill_front_helper(const std::array<T , Dim> &ccoord,

std::index_sequence<Indices...>)

template<typename T, class EigenPlain>

struct EigenMap
#include <field_map_static.hh> Internal struct for handling the matrix-shaped iterates of muGrid::FieldMap

Public Types

using PlainType = EigenPlain
Eigen type of the iterate.

using value_type = std::conditional_t<MutIter == Mapping::Const, Eigen::Map<const PlainType>,
Eigen::Map<PlainType>>

stl (const-correct)

124 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using ref_type = value_type<MutIter>
stl (const-correct)

using Return_t = value_type<MutIter>
for direct access through operator[]

using storage_type = value_type<MutIter>
stored type (cannot always be same as ref_type)

Public Static Functions

static inline constexpr bool IsValidStaticMapType()
check at compile time whether the type is meant to be a map with statically sized iterates.

static inline constexpr bool IsScalarMapType()
check at compiler time whether this map is scalar

template<Mapping MutIter>
static inline constexpr value_type<MutIter> &provide_ref(storage_type<MutIter> &storage)

return the return_type version of the iterate from storage_type

template<Mapping MutIter>
static inline constexpr const value_type<MutIter> &provide_const_ref(const storage_type<MutIter>

&storage)
return the const return_type version of the iterate from storage_type

template<Mapping MutIter>
static inline constexpr value_type<MutIter> *provide_ptr(storage_type<MutIter> &storage)

return a pointer to the iterate from storage_type

template<Mapping MutIter>
static inline constexpr Return_t<MutIter> from_data_ptr(std::conditional_t<MutIter == Mapping::Const,

const T*, T*> data)
return a return_type version of the iterate from its pointer

template<Mapping MutIter>
static inline constexpr storage_type<MutIter> to_storage(value_type<MutIter> &&value)

return a storage_type version of the iterate from its value

static inline constexpr Dim_t stride()
return the nb of components of the iterate (known at compile time)

static inline std::string shape()
return the iterate’s shape as text, mostly for error messages

static inline constexpr Dim_t NbRow()

class Enumerator
#include <ccoord_operations.hh> enumerator class for muSpectre::DynamicPixels

125

µSpectre Documentation, Release v0.1

Public Functions

Enumerator() = delete
Default constructor.

explicit Enumerator(const DynamicPixels &pixels)
Constructor.

Enumerator(const Enumerator &other) = default
Copy constructor.

Enumerator(Enumerator &&other) = default
Move constructor.

virtual ~Enumerator() = default
Destructor.

Enumerator &operator=(const Enumerator &other) = delete
Copy assignment operator.

Enumerator &operator=(Enumerator &&other) = delete
Move assignment operator.

iterator begin() const
stl conformance

iterator end() const
stl conformance

size_t size() const
stl conformance

Protected Attributes

const DynamicPixels &pixels

template<Dim_t dim>

class FFT_freqs
#include <fft_utils.hh> simple class encapsulating the creation, and retrieval of wave vectors

Public Types

using CcoordVector = Eigen::Matrix<Dim_t, dim, 1>
Eigen variant equivalent to Ccoord_t.

using Vector = Eigen::Matrix<Real, dim, 1>
return type for wave vectors

using VectorComplex = Eigen::Matrix<Complex, dim, 1>
return type for complex wave vectors

126 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

FFT_freqs() = delete
Default constructor.

inline explicit FFT_freqs(Ccoord_t<dim> nb_grid_pts)
constructor with just number of grid points

inline FFT_freqs(Ccoord_t<dim> nb_grid_pts, std::array<Real, dim> lengths)
constructor with domain length

FFT_freqs(const FFT_freqs &other) = delete
Copy constructor.

FFT_freqs(FFT_freqs &&other) = default
Move constructor.

virtual ~FFT_freqs() = default
Destructor.

FFT_freqs &operator=(const FFT_freqs &other) = delete
Copy assignment operator.

FFT_freqs &operator=(FFT_freqs &&other) = default
Move assignment operator.

inline Vector get_xi(const Ccoord_t<dim> ccoord) const
get unnormalised wave vector (in sampling units)

inline VectorComplex get_complex_xi(const Ccoord_t<dim> ccoord) const
get unnormalised complex wave vector (in sampling units)

inline Vector get_unit_xi(const Ccoord_t<dim> ccoord) const
get normalised wave vector

inline Dim_t get_nb_grid_pts(Dim_t i) const

Protected Attributes

const std::array<std::valarray<Real>, dim> freqs
container for frequencies ordered by spatial dimension

class FFTEngineBase
#include <fft_engine_base.hh> Virtual base class for FFT engines. To be implemented by all FFT_engine im-
plementations.

Subclassed by muFFT::FFTWEngine, muFFT::FFTWMPIEngine

127

µSpectre Documentation, Release v0.1

Public Types

using GFieldCollection_t = muGrid::GlobalFieldCollection
global FieldCollection

using Pixels = typename GFieldCollection_t::DynamicPixels
pixel iterator

using Field_t = muGrid::TypedFieldBase<Real>
Field type on which to apply the projection. This is a TypedFieldBase because it need to be able to hold
either TypedField or a WrappedField.

using Workspace_t = muGrid::ComplexField
Field type holding a Fourier-space representation of a real-valued second-order tensor field

using iterator = typename GFieldCollection_t::DynamicPixels::iterator
iterator over Fourier-space discretisation point

Public Functions

FFTEngineBase() = delete
Default constructor.

FFTEngineBase(DynCcoord_t nb_grid_pts, Dim_t nb_dof_per_pixel, Communicator comm =
Communicator())

Constructor with the domain’s number of grid points in each direciton, the number of components to trans-
form, and the communicator

FFTEngineBase(const FFTEngineBase &other) = delete
Copy constructor.

FFTEngineBase(FFTEngineBase &&other) = delete
Move constructor.

virtual ~FFTEngineBase() = default
Destructor.

FFTEngineBase &operator=(const FFTEngineBase &other) = delete
Copy assignment operator.

FFTEngineBase &operator=(FFTEngineBase &&other) = delete
Move assignment operator.

virtual void initialise(FFT_PlanFlags)
compute the plan, etc

virtual Workspace_t &fft(Field_t&) = 0
forward transform (dummy for interface)

virtual void ifft(Field_t&) const = 0
inverse transform (dummy for interface)

128 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline virtual bool is_active() const
return whether this engine is active

const Pixels &get_pixels() const
iterators over only those pixels that exist in frequency space (i.e. about half of all pixels, see rfft)

size_t size() const
nb of pixels (mostly for debugging)

size_t fourier_size() const
nb of pixels in Fourier space

size_t workspace_size() const
nb of pixels in the work space (may contain a padding region)

inline const Communicator &get_communicator() const
return the communicator object

inline const DynCcoord_t &get_nb_subdomain_grid_pts() const
returns the process-local number of grid points in each direction of the cell

inline const DynCcoord_t &get_nb_domain_grid_pts() const
returns the process-local number of grid points in each direction of the cell

inline const DynCcoord_t &get_subdomain_locations() const
returns the process-local locations of the cell

inline const DynCcoord_t &get_nb_fourier_grid_pts() const
returns the process-local number of grid points in each direction of the cell in Fourier space

inline const DynCcoord_t &get_fourier_locations() const
returns the process-local locations of the cell in Fourier space

inline GFieldCollection_t &get_field_collection()
only required for testing and debugging

inline Workspace_t &get_work_space()
only required for testing and debugging

inline Real normalisation() const
factor by which to multiply projection before inverse transform (this is typically 1/nb_pixels
for so-called unnormalized transforms (see, e.g. http://www.fftw.org/fftw3_doc/Multi_
002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data or
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.fft.html . Rather than scaling the inverse
transform (which would cost one more loop), FFT engines provide this value so it can be used in the
projection operator (where no additional loop is required)

const Dim_t &get_nb_dof_per_pixel() const
return the number of components per pixel

const Dim_t &get_dim() const
return the number of spatial dimensions

const Dim_t &get_nb_quad() const
returns the number of quadrature points

inline bool is_initialised() const
has this engine been initialised?

129

http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data
http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.fft.html

µSpectre Documentation, Release v0.1

Protected Attributes

Dim_t spatial_dimension
spatial dimension of the grid

Communicator comm
Field collection in which to store fields associated with Fourier-space pointscommunicator

GFieldCollection_t work_space_container
Field collection to store the fft workspace.

DynCcoord_t nb_subdomain_grid_pts
nb_grid_pts of the process-local (subdomain) portion of the cell

DynCcoord_t subdomain_locations
location of the process-local (subdomain) portion of the cell

DynCcoord_t nb_fourier_grid_pts
nb_grid_pts of the process-local (subdomain) portion of the Fourier transformed data

DynCcoord_t fourier_locations
location of the process-local (subdomain) portion of the Fourier transformed data

const DynCcoord_t nb_domain_grid_pts
nb_grid_pts of the full domain of the cell

Workspace_t &work
field to store the Fourier transform of P

const Real norm_factor
normalisation coefficient of fourier transform

Dim_t nb_dof_per_pixel
number of degrees of freedom per pixel. Corresponds to the number of quadrature points per pixel multi-
plied by the number of components per quadrature point

bool initialised = {false}
to prevent double initialisation

class FFTWEngine : public muFFT ::FFTEngineBase
#include <fftw_engine.hh> implements the muFFT::FftEngine_Base interface using the FFTW library

130 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using Parent = FFTEngineBase
base class

using Workspace_t = typename Parent::Workspace_t
field for Fourier transform of second-order tensor

using Field_t = typename Parent::Field_t
real-valued second-order tensor

Public Functions

FFTWEngine() = delete
Default constructor.

FFTWEngine(const DynCcoord_t &nb_grid_pts, Dim_t nb_dof_per_pixel, Communicator comm =
Communicator())

Constructor with the domain’s number of grid points in each direciton, the number of components to trans-
form, and the communicator

FFTWEngine(const FFTWEngine &other) = delete
Copy constructor.

FFTWEngine(FFTWEngine &&other) = delete
Move constructor.

virtual ~FFTWEngine() noexcept
Destructor.

FFTWEngine &operator=(const FFTWEngine &other) = delete
Copy assignment operator.

FFTWEngine &operator=(FFTWEngine &&other) = delete
Move assignment operator.

virtual void initialise(FFT_PlanFlags plan_flags) override
compute the plan, etc

virtual Workspace_t &fft(Field_t &field) override
forward transform

virtual void ifft(Field_t &field) const override
inverse transform

131

µSpectre Documentation, Release v0.1

Protected Attributes

fftw_plan plan_fft = {}
holds the plan for forward fourier transform

fftw_plan plan_ifft = {}
holds the plan for inverse fourier transform

class FFTWMPIEngine : public muFFT ::FFTEngineBase
#include <fftwmpi_engine.hh> implements the muFFT::FFTEngineBase interface using the FFTW library

Public Types

using Parent = FFTEngineBase
base class

using Workspace_t = typename Parent::Workspace_t
field for Fourier transform of second-order tensor

using Field_t = typename Parent::Field_t
real-valued second-order tensor

Public Functions

FFTWMPIEngine() = delete
Default constructor.

FFTWMPIEngine(DynCcoord_t nb_grid_pts, Dim_t nb_dof_per_pixel, Communicator comm =
Communicator())

Constructor with the domain’s number of grid points in each direciton, the number of components to trans-
form, and the communicator

FFTWMPIEngine(const FFTWMPIEngine &other) = delete
Copy constructor.

FFTWMPIEngine(FFTWMPIEngine &&other) = delete
Move constructor.

virtual ~FFTWMPIEngine() noexcept
Destructor.

FFTWMPIEngine &operator=(const FFTWMPIEngine &other) = delete
Copy assignment operator.

FFTWMPIEngine &operator=(FFTWMPIEngine &&other) = delete
Move assignment operator.

virtual void initialise(FFT_PlanFlags plan_flags) override
compute the plan, etc

132 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual Workspace_t &fft(Field_t &field) override
forward transform

virtual void ifft(Field_t &field) const override
inverse transform

inline virtual bool is_active() const override
return whether this engine is active

Protected Attributes

fftw_plan plan_fft = {}
holds the plan for forward fourier transform

fftw_plan plan_ifft = {}
holds the plan for inverse fourier transform

ptrdiff_t workspace_size = {}
size of workspace buffer returned by planner

Real *real_workspace = {}
temporary real workspace that is correctly padded

bool active = {true}
FFTWMPI sometimes assigns zero grid points.

Protected Static Attributes

static int nb_engines = {0}
number of times this engine has been instatiated

class Field
#include <field.hh> Abstract base class for all fields. A field provides storage discretising a mathemat-
ical (scalar, vectorial, tensorial) (real-valued, integer-valued, complex-valued) field on a fixed number of
quadrature points per pixel/voxel of a regular grid. Fields defined on the same domains are grouped within
muGrid::FieldCollections.

Subclassed by muGrid::TypedFieldBase< T >

133

µSpectre Documentation, Release v0.1

Public Functions

Field() = delete
Default constructor.

Field(const Field &other) = delete
Copy constructor.

Field(Field &&other) = default
Move constructor.

virtual ~Field() = default
Destructor.

Field &operator=(const Field &other) = delete
Copy assignment operator.

Field &operator=(Field &&other) = delete
Move assignment operator.

const std::string &get_name() const
return the field’s unique name

FieldCollection &get_collection() const
return a const reference to the field’s collection

const Dim_t &get_nb_components() const
return the number of components stored per quadrature point

std::vector<Dim_t> get_shape(Iteration iter_type) const
evaluate and return the overall shape of the field (for passing the field to generic multidimensional array
objects such as numpy.ndarray)

std::vector<Dim_t> get_pixels_shape() const
evaluate and return the overall shape of the pixels portion of the field (for passing the field to generic
multidimensional array objects such as numpy.ndarray)

virtual std::vector<Dim_t> get_components_shape(Iteration iter_type) const
evaluate and return the shape of the data contained in a single pixel or quadrature point (for passing the
field to generic multidimensional array objects such as numpy.ndarray)

Dim_t get_stride(Iteration iter_type) const
evaluate and return the number of components in an iterate when iterating over this field

virtual const std::type_info &get_stored_typeid() const = 0
return the type information of the stored scalar (for compatibility checking)

size_t size() const
number of entries in the field (= nb_pixel × nb_quad)

virtual size_t buffer_size() const = 0
size of the internal buffer including the pad region (in scalars)

virtual void set_pad_size(size_t pad_size_) = 0
add a pad region to the end of the field buffer; required for using this as e.g. an FFT workspace

const size_t &get_pad_size() const
pad region size

134 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual void set_zero() = 0
initialise field to zero (do more complicated initialisations through fully typed maps)

bool is_global() const
checks whether this field is registered in a global FieldCollection

Protected Functions

Field(const std::string &unique_name, FieldCollection &collection, Dim_t nb_components)
Fields are supposed to only exist in the form of std::unique_ptrs held by a FieldCollection. The
Field constructor is protected to ensure this.

Parameters
• unique_name – unique field name (unique within a collection)

• nb_components – number of components to store per quadrature point

• collection – reference to the holding field collection.

virtual void resize(size_t size) = 0
resizes the field to the given size

Protected Attributes

friend FieldCollection

gives field collections the ability to resize() fields

size_t current_size = {}
maintains a tally of the current size, as it cannot be reliably determined from either values or alt_values
alone.

const std::string name
the field’s unique name

FieldCollection &collection
reference to the collection this field belongs to

const Dim_t nb_components
number of components stored per quadrature point (e.g., 3 for a three-dimensional vector, or 9 for a three-
dimensional second-rank tensor)

size_t pad_size = {}
size of padding region at end of buffer

class FieldCollection
#include <field_collection.hh> Base class for both muGrid::GlobalFieldCollection and
muGrid::LocalFieldCollection. Manages the a group of fields with the same domain of validitiy
(i.e., global fields, or local fields defined on the same pixels).

Subclassed by muGrid::GlobalFieldCollection, muGrid::LocalFieldCollection

135

µSpectre Documentation, Release v0.1

Public Types

enum ValidityDomain
domain of validity of the managed fields

Values:

enumerator Global

enumerator Local

using Field_ptr = std::unique_ptr<Field, FieldDestructor<Field>>
unique_ptr for holding fields

using StateField_ptr = std::unique_ptr<StateField, FieldDestructor<StateField>>
unique_ptr for holding state fields

using QuadPtIndexIterable = IndexIterable
convenience alias

Public Functions

FieldCollection() = delete
Default constructor.

FieldCollection(const FieldCollection &other) = delete
Copy constructor.

FieldCollection(FieldCollection &&other) = default
Move constructor.

virtual ~FieldCollection() = default
Destructor.

FieldCollection &operator=(const FieldCollection &other) = delete
Copy assignment operator.

FieldCollection &operator=(FieldCollection &&other) = default
Move assignment operator.

template<typename T>
inline TypedField<T> ®ister_field(const std::string &unique_name, const Dim_t &nb_components)

place a new field in the responsibility of this collection (Note, because fields have protected constructors,
users can’t create them

Technically, these explicit instantiations are not necessary, as they are implicitly instantiated when the reg-
ister_<T>field(. . .) member functions are compiled.

Parameters
• unique_name – unique identifier for this field

136 Chapter 7. Reference

µSpectre Documentation, Release v0.1

• nb_components – number of components to be stored per quadrature point (e.g., 4 for a
two-dimensional second-rank tensor, or 1 for a scalar field)

TypedField<Real> ®ister_real_field(const std::string &unique_name, const Dim_t
&nb_components)

place a new real-valued field in the responsibility of this collection (Note, because fields have protected
constructors, users can’t create them

Parameters
• unique_name – unique identifier for this field

• nb_components – number of components to be stored per quadrature point (e.g., 4 for a
two-dimensional second-rank tensor, or 1 for a scalar field)

TypedField<Complex> ®ister_complex_field(const std::string &unique_name, const Dim_t
&nb_components)

place a new complex-valued field in the responsibility of this collection (Note, because fields have protected
constructors, users can’t create them

Parameters
• unique_name – unique identifier for this field

• nb_components – number of components to be stored per quadrature point (e.g., 4 for a
two-dimensional second-rank tensor, or 1 for a scalar field)

TypedField<Int> ®ister_int_field(const std::string &unique_name, const Dim_t &nb_components)
place a new integer-valued field in the responsibility of this collection (Note, because fields have protected
constructors, users can’t create them

Parameters
• unique_name – unique identifier for this field

• nb_components – number of components to be stored per quadrature point (e.g., 4 for a
two-dimensional second-rank tensor, or 1 for a scalar field)

TypedField<Uint> ®ister_uint_field(const std::string &unique_name, const Dim_t
&nb_components)

place a new unsigned integer-valued field in the responsibility of this collection (Note, because fields have
protected constructors, users can’t create them

Parameters
• unique_name – unique identifier for this field

• nb_components – number of components to be stored per quadrature point (e.g., 4 for a
two-dimensional second-rank tensor, or 1 for a scalar field)

template<typename T>
inline TypedStateField<T> ®ister_state_field(const std::string &unique_prefix, const Dim_t

&nb_memory, const Dim_t &nb_components)
place a new state field in the responsibility of this collection (Note, because state fields have protected
constructors, users can’t create them

TypedStateField<Real> ®ister_real_state_field(const std::string &unique_prefix, const Dim_t
&nb_memory, const Dim_t &nb_components)

place a new real-valued state field in the responsibility of this collection (Note, because state fields have
protected constructors, users can’t create them

137

µSpectre Documentation, Release v0.1

Parameters
• unique_prefix – unique idendifier for this state field

• nb_memory – number of previous values of this field to store

• nb_components – number of scalar components to store per quadrature point

TypedStateField<Complex> ®ister_complex_state_field(const std::string &unique_prefix, const
Dim_t &nb_memory, const Dim_t
&nb_components)

place a new complex-valued state field in the responsibility of this collection (Note, because state fields
have protected constructors, users can’t create them

Parameters
• unique_prefix – unique idendifier for this state field

• nb_memory – number of previous values of this field to store

• nb_components – number of scalar components to store per quadrature point

TypedStateField<Int> ®ister_int_state_field(const std::string &unique_prefix, const Dim_t
&nb_memory, const Dim_t &nb_components)

place a new integer-valued state field in the responsibility of this collection (Note, because state fields have
protected constructors, users can’t create them

Parameters
• unique_prefix – unique idendifier for this state field

• nb_memory – number of previous values of this field to store

• nb_components – number of scalar components to store per quadrature point

TypedStateField<Uint> ®ister_uint_state_field(const std::string &unique_prefix, const Dim_t
&nb_memory, const Dim_t &nb_components)

place a new unsigned integer-valued state field in the responsibility of this collection (Note, because state
fields have protected constructors, users can’t create them

Parameters
• unique_prefix – unique idendifier for this state field

• nb_memory – number of previous values of this field to store

• nb_components – number of scalar components to store per quadrature point

bool field_exists(const std::string &unique_name) const
check whether a field of name ‘unique_name’ has already been registered

bool state_field_exists(const std::string &unique_prefix) const
check whether a field of name ‘unique_name’ has already been registered

const Dim_t &get_nb_entries() const
returns the number of entries held by any given field in this collection. This corresponds to nb_pixels
× nb_quad_pts, (I.e., a scalar field field and a vector field sharing the the same collection have the same
number of entries, even though the vector field has more scalar values.)

size_t get_nb_pixels() const
returns the number of pixels present in the collection

138 Chapter 7. Reference

µSpectre Documentation, Release v0.1

bool has_nb_quad() const
check whether the number of quadrature points per pixel/voxel has ben set

void set_nb_quad(Dim_t nb_quad_pts_per_pixel)
set the number of quadrature points per pixel/voxel. Can only be done once.

const Dim_t &get_nb_quad() const
return the number of quadrature points per pixel

const Dim_t &get_spatial_dim() const
return the spatial dimension of the underlying discretisation grid

const ValidityDomain &get_domain() const
return the domain of validity (i.e., wher the fields are defined glob-
ally (muGrid::FieldCollection::ValidityDomain::Global) or locally
(muGrid::FieldCollection::ValidityDomain::Local)

bool is_initialised() const
whether the collection has been properly initialised (i.e., it knows the number of quadrature points and all
its pixels/voxels

PixelIndexIterable get_pixel_indices_fast() const
return an iterable proxy to the collection which allows to efficiently iterate over the indices fo the collection’s
pixels

IndexIterable get_pixel_indices() const
return an iterable proxy to the collection which allows to iterate over the indices fo the collection’s pixels

IndexIterable get_quad_pt_indices() const
return an iterable proxy to the collection which allows to iterate over the indices fo the collection’s quadra-
ture points

inline std::vector<size_t> get_pixel_ids()

Field &get_field(const std::string &unique_name)
returns a (base-type) reference to the field identified by unique_name. Throws a
muGrid::FieldCollectionError if the field does not exist.

StateField &get_state_field(const std::string &unique_prefix)
returns a (base-type) reference to the state field identified by unique_prefix. Throws a
muGrid::FieldCollectionError if the state field does not exist.

std::vector<std::string> list_fields() const
returns a vector of all field names

void preregister_map(std::shared_ptr<std::function<void()>> &call_back)
preregister a map for latent initialisation

139

µSpectre Documentation, Release v0.1

Protected Functions

FieldCollection(ValidityDomain domain, const Dim_t &spatial_dimension, const Dim_t &nb_quad_pts)
Constructor (not called by user, who constructs either a LocalFieldCollection or a GlobalFieldCollection

Parameters
• domain – Domain of validity, can be global or local

• spatial_dimension – spatial dimension of the field (can be muGrid::Unknown, e.g., in
the case of the local fields for storing internal material variables)

• nb_quad_pts – number of quadrature points per pixel/voxel

template<typename T>
TypedField<T> ®ister_field_helper(const std::string &unique_name, const Dim_t

&nb_components)
internal worker function called by register_<T>_field

template<typename T>
TypedStateField<T> ®ister_state_field_helper(const std::string &unique_prefix, const Dim_t

&nb_memory, const Dim_t &nb_components)
internal worker function called by register_<T>_state_field

void allocate_fields()
loop through all fields and allocate their memory. Is exclusively called by the daughter classes’ initialise
member function.

void initialise_maps()
initialise all preregistered maps

Protected Attributes

std::map<std::string, Field_ptr> fields = {}
storage container for fields

std::map<std::string, StateField_ptr> state_fields = {}
storage container for state fields

std::vector<std::weak_ptr<std::function<void()>>> init_callbacks = {}
Maps registered before initialisation which will need their data_ptr set.

ValidityDomain domain
domain of validity

Dim_t spatial_dim
spatial dimension

Dim_t nb_quad_pts
number of quadrature points per pixel/voxel

140 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Dim_t nb_entries = {Unknown}
total number of entries

bool initialised = {false}
keeps track of whether the collection has already been initialised

std::vector<size_t> pixel_indices = {}
Storage for indices of the stored quadrature points in the global field collection. Note that these are not truly
global indices, but rather absolute indices within the domain of the local processor. I.e., they are universally
valid to address any quadrature point on the local processor, and not for any quadrature point located on
anothe processor.

class FieldCollectionError : public runtime_error
#include <field_collection.hh> base class for field collection-related exceptions

Public Functions

inline explicit FieldCollectionError(const std::string &what)
constructor

inline explicit FieldCollectionError(const char *what)
constructor

template<class DefaultDestroyable>

struct FieldDestructor
#include <field_collection.hh> forward declacation of the field’s destructor-functor

Public Functions

void operator()(DefaultDestroyable *field)
deletes the held field

class FieldError : public runtime_error
#include <field.hh> base class for field-related exceptions

Public Functions

inline explicit FieldError(const std::string &what)
constructor

inline explicit FieldError(const char *what)
constructor

template<typename T, Mapping Mutability>

141

µSpectre Documentation, Release v0.1

class FieldMap
#include <field_map.hh> forward declaration

Dynamically sized field map. Field maps allow iterating over the pixels or quadrature points of a field and to
select the shape (in a matrix sense) of the iterate. For example, it allows to iterate in 2×2 matrices over the
quadrature points of a strain field for a two-dimensional problem.

Subclassed by muGrid::StaticFieldMap< T, Mutability, MapType, IterationType >

Public Types

using Scalar = T
stored scalar type

using Field_t = std::conditional_t<Mutability == Mapping::Const, const TypedFieldBase<T>,
TypedFieldBase<T>>

const-correct field depending on mapping mutability

using PlainType = Eigen::Matrix<T , Eigen::Dynamic, Eigen::Dynamic>
dynamically mapped eigen type

using Return_t = std::conditional_t<MutVal == Mapping::Const, Eigen::Map<const PlainType>,
Eigen::Map<PlainType>>

return type for iterators over this- map

using EigenRef = Eigen::Ref<const PlainType>
Input type for matrix-like values (used for setting uniform values)

using PixelEnumeration_t = akantu::containers::ZipContainer<FieldCollection::PixelIndexIterable,
FieldMap&>

zip-container for iterating over pixel index and stored value simultaneously

using Enumeration_t = akantu::containers::ZipContainer<FieldCollection::IndexIterable, FieldMap&>
zip-container for iterating over pixel or quadrature point index and stored value simultaneously

using iterator = Iterator<(Mutability == Mapping::Mut) ? Mapping::Mut : Mapping::Const>
stl

using const_iterator = Iterator<Mapping::Const>
stl

142 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

FieldMap() = delete
Default constructor.

explicit FieldMap(Field_t &field, Iteration iter_type = Iteration::QuadPt)
Constructor from a field. The default case is a map iterating over quadrature points with a matrix of shape
(nb_components × 1) per field entry

FieldMap(Field_t &field, Dim_t nb_rows, Iteration iter_type = Iteration::QuadPt)
Constructor from a field with explicitly chosen shape of iterate. (the number of columns is inferred).

FieldMap(const FieldMap &other) = delete
Copy constructor.

FieldMap(FieldMap &&other)
Move constructor.

virtual ~FieldMap() = default
Destructor.

FieldMap &operator=(const FieldMap &other) = delete
Copy assignment operator (delete because of reference member)

FieldMap &operator=(FieldMap &&other) = delete
Move assignment operator (delete because of reference member)

template<bool IsMutableField = Mutability == Mapping::Mut>
inline std::enable_if_t<IsMutableField, FieldMap> &operator=(const EigenRef &val)

Assign a matrix-like value to every entry.

template<bool IsMutableField = Mutability == Mapping::Mut>
inline std::enable_if_t<IsMutableField, FieldMap> &operator=(const Scalar &val)

Assign a scalar value to every entry.

iterator begin()
stl

iterator end()
stl

const_iterator cbegin()
stl

const_iterator cend()
stl

const_iterator begin() const
stl

const_iterator end() const
stl

size_t size() const
returns the number of iterates produced by this map (corresponds to the number of field entries if Itera-
tion::Quadpt, or the number of pixels/voxels if Iteration::Pixel);

143

µSpectre Documentation, Release v0.1

inline Return_t<Mutability> operator[](size_t index)
random acces operator

inline Return_t<Mapping::Const> operator[](size_t index) const
random const acces operator

void set_data_ptr()
query the size from the field’s collection and set data_ptr

PixelEnumeration_t enumerate_pixel_indices_fast()
return an iterable proxy over pixel indices and stored values simultaneously. Throws a
muGrid::FieldMapError if the iteration type is over quadrature points

Enumeration_t enumerate_indices()
return an iterable proxy over pixel/quadrature indices and stored values simultaneously

PlainType mean() const
evaluate and return the mean value of the map

Public Static Functions

static inline constexpr Mapping FieldMutability()
determine whether a field is mutably mapped at compile time

static inline constexpr bool IsStatic()
determine whether a field map is statically sized at compile time

Protected Attributes

const Field_t &field
mapped field. Needed for query at initialisations

const Iteration iteration
type of map iteration

const Dim_t stride
precomputed stride

const Dim_t nb_rows
number of rows of the iterate

const Dim_t nb_cols
number of columns fo the iterate

T *data_ptr = {nullptr}
Pointer to mapped data; is also unknown at construction and set in the map’s begin function

bool is_initialised = {false}
keeps track of whether the map has been initialised.

144 Chapter 7. Reference

µSpectre Documentation, Release v0.1

std::shared_ptr<std::function<void()>> callback = {nullptr}
shared_ptr used for latent initialisation

class FieldMapError : public runtime_error
#include <field_map.hh> base class for field map-related exceptions

Public Functions

inline explicit FieldMapError(const std::string &what)
constructor

inline explicit FieldMapError(const char *what)
constructor

template<size_t N>

struct Foreach
#include <iterators.hh> static for loop

Public Static Functions

template<class Tuple>
static inline bool not_equal(Tuple &&a, Tuple &&b)

undocumented

template<>

struct Foreach<0>
#include <iterators.hh> static comparison

Public Static Functions

template<class Tuple>
static inline bool not_equal(Tuple &&a, Tuple &&b)

undocumented

class FourierDerivative : public muFFT ::DerivativeBase
#include <derivative.hh> Representation of a derivative computed by Fourier interpolation

Public Types

using Parent = DerivativeBase
base class

using Vector = typename Parent::Vector
convenience alias

145

µSpectre Documentation, Release v0.1

Public Functions

FourierDerivative() = delete
Default constructor.

explicit FourierDerivative(Dim_t spatial_dimension, Dim_t direction)
Constructor with raw FourierDerivative information.

FourierDerivative(const FourierDerivative &other) = default
Copy constructor.

FourierDerivative(FourierDerivative &&other) = default
Move constructor.

virtual ~FourierDerivative() = default
Destructor.

FourierDerivative &operator=(const FourierDerivative &other) = delete
Copy assignment operator.

FourierDerivative &operator=(FourierDerivative &&other) = delete
Move assignment operator.

inline virtual Complex fourier(const Vector &phase) const
Return Fourier representation of the Fourier interpolated derivative. This here simply returns I*2*pi*phase.
(I*2*pi*wavevector is the Fourier representation of the derivative.)

Protected Attributes

Dim_t direction
spatial direction in which to perform differentiation

template<typename Rhs, class CellAdaptor>

struct generic_product_impl<CellAdaptor, Rhs, SparseShape, DenseShape, GemvProduct> : public
generic_product_impl_base<CellAdaptor, Rhs, generic_product_impl<CellAdaptor, Rhs>>

#include <cell_adaptor.hh> Implementation of muSpectre::CellAdaptor * Eigen::DenseVector through
a specialization of Eigen::internal::generic_product_impl:

Public Types

typedef Product<CellAdaptor, Rhs>::Scalar Scalar
undocumented

146 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<typename Dest>
static inline void scaleAndAddTo(Dest &dst, const CellAdaptor &lhs, const Rhs &rhs, const Scalar &alpha)

undocumented

class GlobalFieldCollection : public muGrid::FieldCollection
#include <field_collection_global.hh> muGrid::GlobalFieldCollection derives from
muGrid::FieldCollection and stores global fields that live throughout the whole computational do-
main, i.e. are defined for every pixel/voxel.

Public Types

using Parent = FieldCollection
alias of base class

using DynamicPixels = CcoordOps::DynamicPixels
pixel iterator

Public Functions

GlobalFieldCollection() = delete
Default constructor.

GlobalFieldCollection(Dim_t spatial_dimension, Dim_t nb_quad_pts)
Constructor

Parameters
• spatial_dimension – number of spatial dimensions, must be 1, 2, 3, or Unknown

• nb_quad_pts – number of quadrature points per pixel/voxel

GlobalFieldCollection(Dim_t spatial_dimension, Dim_t nb_quad_pts, const DynCcoord_t &nb_grid_pts,
const DynCcoord_t &locations = {})

Constructor with initialization

Parameters
• spatial_dimension – number of spatial dimensions, must be 1, 2, 3, or Unknown

• nb_quad_pts – number of quadrature points per pixel/voxel

GlobalFieldCollection(const GlobalFieldCollection &other) = delete
Copy constructor.

GlobalFieldCollection(GlobalFieldCollection &&other) = default
Move constructor.

virtual ~GlobalFieldCollection() = default
Destructor.

GlobalFieldCollection &operator=(const GlobalFieldCollection &other) = delete
Copy assignment operator.

147

µSpectre Documentation, Release v0.1

GlobalFieldCollection &operator=(GlobalFieldCollection &&other) = delete
Move assignment operator.

const DynamicPixels &get_pixels() const
Return the pixels class that allows to iterator over pixels.

template<size_t Dim>
inline Dim_t get_index(const Ccoord_t<Dim> &ccoord) const

Return index for a ccoord.

inline DynCcoord_t get_ccoord(const Dim_t &index) const
return coordinates of the i-th pixel

void initialise(const DynCcoord_t &nb_grid_pts, const DynCcoord_t &locations = {})
freeze the problem size and allocate memory for all fields of the collection. Fields added later on will have
their memory allocated upon construction.

template<size_t Dim>
inline void initialise(const Ccoord_t<Dim> &nb_grid_pts, const Ccoord_t<Dim> &locations = {})

freeze the problem size and allocate memory for all fields of the collection. Fields added later on will have
their memory allocated upon construction.

void initialise(const DynCcoord_t &nb_grid_pts, const DynCcoord_t &locations, const DynCcoord_t
&strides)

freeze the problem size and allocate memory for all fields of the collection. Fields added later on will have
their memory allocated upon construction.

template<size_t Dim>
inline void initialise(const Ccoord_t<Dim> &nb_grid_pts, const Ccoord_t<Dim> &locations, const

Ccoord_t<Dim> &strides)
freeze the problem size and allocate memory for all fields of the collection. Fields added later on will have
their memory allocated upon construction.

GlobalFieldCollection get_empty_clone() const
obtain a new field collection with the same domain and pixels

Protected Attributes

DynamicPixels pixels = {}
helper to iterate over the grid

template<Dim_t Dim, class Strain_t, class Tangent_t>

struct Hooke
#include <materials_toolbox.hh> static inline implementation of Hooke’s law

148 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

static inline constexpr Real compute_lambda(const Real &young, const Real &poisson)
compute Lamé’s first constant

Parameters
• young – Young’s modulus

• poisson – Poisson’s ratio

static inline constexpr Real compute_mu(const Real &young, const Real &poisson)
compute Lamé’s second constant (i.e., shear modulus)

Parameters
• young – Young’s modulus

• poisson – Poisson’s ratio

static inline constexpr Real compute_K(const Real &young, const Real &poisson)
compute the bulk modulus

Parameters
• young – Young’s modulus

• poisson – Poisson’s ratio

static inline Eigen::TensorFixedSize<Real, Eigen::Sizes<Dim, Dim, Dim, Dim>> compute_C(const Real
&lambda, const
Real &mu)

compute the stiffness tensor

Parameters
• lambda – Lamé’s first constant

• mu – Lamé’s second constant (i.e., shear modulus)

static inline T4Mat<Real, Dim> compute_C_T4(const Real &lambda, const Real &mu)
compute the stiffness tensor

Parameters
• lambda – Lamé’s first constant

• mu – Lamé’s second constant (i.e., shear modulus)

template<class s_t>
static inline auto evaluate_stress(const Real &lambda, const Real &mu, s_t &&E) -> decltype(auto)

return stress

Parameters
• lambda – First Lamé’s constant

• mu – Second Lamé’s constant (i.e. shear modulus)

• E – Green-Lagrange or small strain tensor

template<class T_t, class s_t>

149

µSpectre Documentation, Release v0.1

static inline auto evaluate_stress(const T_t C, s_t &&E) -> decltype(auto)
return stress

Parameters
• C – stiffness tensor (Piola-Kirchhoff 2 (or) w.r.t to E)

• E – Green-Lagrange or small strain tensor

template<class s_t>
static inline auto evaluate_stress(const Real &lambda, const Real &mu, Tangent_t &&C, s_t &&E) ->

decltype(auto)
return stress and tangent stiffness

Parameters
• lambda – First Lamé’s constant

• mu – Second Lamé’s constant (i.e. shear modulus)

• E – Green-Lagrange or small strain tensor

• C – stiffness tensor (Piola-Kirchhoff 2 (or) w.r.t to E)

class IncompletePixels

Public Functions

explicit IncompletePixels(const CellSplit &cell)
constructor

IncompletePixels(const IncompletePixels &other) = default
copy constructor

IncompletePixels(IncompletePixels &other) = default
move constructor

virtual ~IncompletePixels() = default

inline iterator begin() const
stl conformance

inline iterator end() const
stl conformance

inline size_t size() const
stl conformance

Protected Attributes

const CellSplit &cell

std::vector<Real> incomplete_assigned_ratios

std::vector<Dim_t> index_incomplete_pixels

150 Chapter 7. Reference

µSpectre Documentation, Release v0.1

class IndexIterable
#include <field_collection.hh> Iterate class for iterating over quadrature point indices of a field collection (i.e.
the iterate you get when iterating over the result of muGrid::FieldCollection::get_quad_pt_indices).

Public Functions

IndexIterable() = delete
Default constructor.

IndexIterable(const IndexIterable &other) = delete
Copy constructor.

IndexIterable(IndexIterable &&other) = default
Move constructor.

virtual ~IndexIterable() = default
Destructor.

IndexIterable &operator=(const IndexIterable &other) = delete
Copy assignment operator.

IndexIterable &operator=(IndexIterable &&other) = delete
Move assignment operator.

iterator begin() const
stl

iterator end() const
stl

size_t size() const
stl

Protected Functions

inline Dim_t get_stride() const
evaluate and return the stride with with the fast index of the iterators over the indices of this collection rotate

IndexIterable(const FieldCollection &collection, const Iteration &iteration_type)
Constructor is protected, because no one ever need to construct this except the fieldcollection

Protected Attributes

friend FieldCollection

allow the field collection to create muGrid::FieldCollection::IndexIterables

const FieldCollection &collection
reference back to the proxied collection

151

µSpectre Documentation, Release v0.1

const Iteration iteration_type
whether to iterate over pixels or quadrature points

template<class Derived>

struct is_fixed
#include <eigen_tools.hh> Helper class to check whether an Eigen::Array or Eigen::Matrix is statically
sized

Public Types

using T = std::remove_cv_t<std::remove_reference_t<Derived>>
raw type for testing

Public Static Attributes

static constexpr bool value = {T ::SizeAtCompileTime != Eigen::Dynamic}
evaluated test

template<class TestClass>

struct is_matrix
#include <eigen_tools.hh> Structure to determine whether an expression can be evaluated into a
Eigen::Matrix, Eigen::Array, etc. and which helps determine compile-time size

Public Types

using T = std::remove_cv_t<std::remove_reference_t<TestClass>>

Public Static Attributes

static constexpr bool value{std::is_base_of<Eigen::MatrixBase<T>, T>::value}

template<class Derived>

struct is_matrix<Eigen::Map<Derived>>

Public Static Attributes

static constexpr bool value = {is_matrix<Derived>::value}

template<class Derived>

struct is_matrix<Eigen::Ref<Derived>>

152 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Attributes

static constexpr bool value = {is_matrix<Derived>::value}

template<class T>

struct is_reference_wrapper : public false_type

template<class U>

struct is_reference_wrapper<std::reference_wrapper<U>> : public true_type

template<class Derived>

struct is_square
#include <eigen_tools.hh> Helper class to check whether an Eigen::Array or Eigen::Matrix is a static-size
and square.

Public Types

using T = std::remove_cv_t<std::remove_reference_t<Derived>>
raw type for testing

Public Static Attributes

static constexpr bool value{(T ::RowsAtCompileTime == T ::ColsAtCompileTime) && is_fixed<T>::value}
true if the object is square and statically sized

template<class T, Dim_t order>

struct is_tensor
#include <tensor_algebra.hh> Check whether a given expression represents a Tensor specified order.

Public Static Attributes

static constexpr bool value = (std::is_convertible<T , Eigen::Tensor<Real, order>>::value ||
std::is_convertible<T , Eigen::Tensor<Int, order>>::value || std::is_convertible<T , Eigen::Tensor<Complex,
order>>::value)

evaluated test

template<class Strains_t, class Stresses_t, SplitCell is_cell_split = SplitCell::no>

class iterable_proxy
#include <iterable_proxy.hh> this iterator class is a default for simple laws that just take a strain

153

µSpectre Documentation, Release v0.1

Public Types

using Strain_t = typename internal::StrainsTComputer<Strains_t>::type
expected type for strain values

using Stress_t = typename internal::StressesTComputer<Stresses_t>::type
expected type for stress values

using StrainFieldTup = std::conditional_t<(std::tuple_size<Strains_t>::value == 2), std::tuple<const
muGrid::RealField&, const muGrid::RealField&>, std::tuple<const muGrid::RealField&>>

tuple containing a strain and possibly a strain-rate field

using StressFieldTup = std::conditional_t<(std::tuple_size<Stresses_t>::value == 2),
std::tuple<muGrid::RealField&, muGrid::RealField&>, std::tuple<muGrid::RealField&>>

tuple containing a stress and possibly a tangent stiffness field

Public Functions

iterable_proxy() = delete
Default constructor.

template<bool DoNeedTgt = std::tuple_size<Stresses_t>::value == 2, bool DoNeedRate =
std::tuple_size<Strain_t>::value == 2>
inline iterable_proxy(MaterialBase &mat, const muGrid::RealField &F, std::enable_if_t<DoNeedRate,

const muGrid::RealField> &F_rate, muGrid::RealField &P,
std::enable_if_t<DoNeedTgt, muGrid::RealField> &K)

Iterator uses the material’s internal variables field collection to iterate selectively over the global fields (such
as the transformation gradient F and first Piola-Kirchhoff stress P.

template<bool DontNeedTgt = std::tuple_size<Stresses_t>::value == 1, bool DoNeedRate =
std::tuple_size<Strain_t>::value == 2>
inline iterable_proxy(MaterialBase &mat, const muGrid::RealField &F, std::enable_if_t<DoNeedRate,

const muGrid::RealField> &F_rate, std::enable_if_t<DontNeedTgt,
muGrid::RealField> &P)

template<bool DoNeedTgt = std::tuple_size<Stresses_t>::value == 2, bool DontNeedRate =
std::tuple_size<Strain_t>::value == 1>
inline iterable_proxy(MaterialBase &mat, std::enable_if_t<DontNeedRate, const muGrid::RealField> &F,

muGrid::RealField &P, std::enable_if_t<DoNeedTgt, muGrid::RealField> &K)

template<bool DontNeedTgt = std::tuple_size<Stresses_t>::value == 1, bool DontNeedRate =
std::tuple_size<Strain_t>::value == 1>
inline iterable_proxy(MaterialBase &mat, std::enable_if_t<DontNeedRate, const muGrid::RealField> &F,

std::enable_if_t<DontNeedTgt, muGrid::RealField> &P)

iterable_proxy(const iterable_proxy &other) = default
Copy constructor.

iterable_proxy(iterable_proxy &&other) = default
Move constructor.

154 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual ~iterable_proxy() = default
Destructor.

iterable_proxy &operator=(const iterable_proxy &other) = default
Copy assignment operator.

iterable_proxy &operator=(iterable_proxy &&other) = default
Move assignment operator.

inline iterator begin()
returns iterator to first pixel if this material

inline iterator end()
returns iterator past the last pixel in this material

Protected Attributes

MaterialBase &material
reference to the proxied material

StrainFieldTup strain_field
cell’s global strain field

StressFieldTup stress_tup
references to the global stress field and perhaps tangent

class iterator
#include <iterable_proxy.hh> dereferences into a tuple containing strains, and internal variables, as well as maps
to the stress and potentially stiffness maps where to write the response of a pixel

Public Types

using value_type = std::tuple<Strain_t, Stress_t, const size_t&, Real>
return type contains a tuple of strain and possibly strain rate, stress and possibly stiffness, and a refererence
to the pixel index

using iterator_category = std::forward_iterator_tag
stl conformance

Public Functions

iterator() = delete
Default constructor.

inline explicit iterator(const iterable_proxy &proxy, bool begin = true)
Iterator uses the material’s internal variables field collection to iterate selectively over the global fields (such
as the transformation gradient F and first Piola-Kirchhoff stress P.

155

µSpectre Documentation, Release v0.1

iterator(const iterator &other) = default
Copy constructor.

iterator(iterator &&other) = default
Move constructor.

virtual ~iterator() = default
Destructor.

iterator &operator=(const iterator &other) = default
Copy assignment operator.

iterator &operator=(iterator &&other) = default
Move assignment operator.

inline iterator &operator++()
pre-increment

inline value_type operator*()
dereference

inline bool operator!=(const iterator &other) const
inequality

Protected Attributes

const iterable_proxy &proxy
ref to the proxy

Strains_t strain_map
map onto the global strain field

Stresses_t stress_map
map onto the global stress field and possibly tangent stiffness

size_t index
counter of current iterate (quad point). This value is the look-up index for the local field collection

muGrid::FieldCollection::IndexIterable::iterator quad_pt_iter
iterator over quadrature point. This value is the look-up index for the global field collection

class iterator
#include <field_collection.hh> iterator class for iterating over quadrature point indices or pixel indices of a
muGrid::FieldCollection::IndexIterable. Dereferences to an index.

156 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using PixelIndexIterator_t = typename std::vector<size_t>::const_iterator
convenience alias

Public Functions

iterator() = delete
Default constructor.

iterator(const PixelIndexIterator_t &pixel_index_iterator, const size_t &stride)
constructor

iterator(const iterator &other) = default
Copy constructor.

iterator(iterator &&other) = default
Move constructor.

~iterator() = default
Destructor.

iterator &operator=(const iterator &other) = default
Copy assignment operator.

iterator &operator=(iterator &&other) = default
Move assignment operator.

inline iterator &operator++()
pre-increment

inline bool operator!=(const iterator &other) const
comparison

inline bool operator==(const iterator &other) const
comparison (required by akantu::iterators)

inline size_t operator*()
dereference

Protected Attributes

size_t stride
stride for the slow moving index

size_t offset = {}
fast-moving index

PixelIndexIterator_t pixel_index_iterator
iterator of slow moving index

template<Mapping MutIter>

157

µSpectre Documentation, Release v0.1

class Iterator
#include <field_map.hh> forward-declaration for mugrid::FieldMap’s iterator

Public Types

using FieldMap_t = std::conditional_t<MutIter == Mapping::Const, const FieldMap, FieldMap>
convenience alias

using value_type = typename FieldMap<T, Mutability>::template Return_t<MutIter>
stl

using cvalue_type = typename FieldMap<T, Mutability>::template Return_t<Mapping::Const>
stl

Public Functions

Iterator() = delete
Default constructor.

inline Iterator(FieldMap_t &map, bool end)
Constructor to beginning, or to end.

Iterator(const Iterator &other) = delete
Copy constructor.

Iterator(Iterator &&other) = default
Move constructor.

virtual ~Iterator() = default
Destructor.

Iterator &operator=(const Iterator &other) = default
Copy assignment operator.

Iterator &operator=(Iterator &&other) = default
Move assignment operator.

inline Iterator &operator++()
pre-increment

inline value_type operator*()
dereference

inline cvalue_type operator*() const
dereference

inline bool operator==(const Iterator &other) const
equality

inline bool operator!=(const Iterator &other) const
inequality

158 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Attributes

FieldMap_t &map
FieldMap being iterated over.

size_t index
current iteration index

template<Mapping MutIter>

class Iterator
#include <field_map_static.hh> Iterator class for muGrid::StaticFieldMap

Public Types

using value_type = typename MapType::template value_type<MutIter>
type returned by iterator

using storage_type = typename MapType::template storage_type<MutIter>
type stored

Public Functions

Iterator() = delete
Default constructor.

inline Iterator(const StaticFieldMap &map, bool end)
Constructor to beginning, or to end.

Iterator(const Iterator &other) = default
Copy constructor.

Iterator(Iterator &&other) = default
Move constructor.

virtual ~Iterator() = default
Destructor.

Iterator &operator=(const Iterator &other) = default
Copy assignment operator.

Iterator &operator=(Iterator &&other) = default
Move assignment operator.

inline Iterator &operator++()
pre-increment

inline value_type &operator*()
dereference

inline value_type *operator->()
pointer to member

159

µSpectre Documentation, Release v0.1

inline bool operator==(const Iterator &other) const
equality

inline bool operator!=(const Iterator &other) const
inequality

Protected Attributes

const StaticFieldMap &map
FieldMap being iterated over.

size_t index
current iteration index

storage_type iterate
map which is being returned per iterate

class iterator
#include <ccoord_operations.hh> Iterator class for muSpectre::DynamicPixels

Subclassed by muGrid::CcoordOps::DynamicPixels::Enumerator::iterator

Public Types

using value_type = DynCcoord<threeD>
stl

using const_value_type = const value_type
stl conformance

using pointer = value_type*
stl conformance

using difference_type = std::ptrdiff_t
stl conformance

using iterator_category = std::forward_iterator_tag
stl conformance

160 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

inline iterator(const DynamicPixels &pixels, size_t index)
constructor

iterator() = delete
Default constructor.

iterator(const iterator &other) = default
Copy constructor.

iterator(iterator &&other) = default
Move constructor.

~iterator() = default
Destructor.

iterator &operator=(const iterator &other) = delete
Copy assignment operator.

iterator &operator=(iterator &&other) = delete
Move assignment operator.

inline value_type operator*() const
dereferencing

inline iterator &operator++()
pre-increment

inline bool operator!=(const iterator &other) const
inequality

inline bool operator==(const iterator &other) const
equality

Protected Attributes

const DynamicPixels &pixels
ref to pixels in cell

size_t index
index of currently pointed-to pixel

class iterator : public muGrid::CcoordOps::DynamicPixels::iterator

161

µSpectre Documentation, Release v0.1

Public Types

using Parent = DynamicPixels::iterator

Public Functions

inline std::tuple<Dim_t, Parent::value_type> operator*() const

class iterator
#include <ccoord_operations.hh> iterators over Pixels dereferences to cell coordinates

Public Types

using value_type = Ccoord
stl conformance

using const_value_type = const value_type
stl conformance

using pointer = value_type*
stl conformance

using difference_type = std::ptrdiff_t
stl conformance

using iterator_category = std::forward_iterator_tag
stl conformance

using reference = value_type
stl conformance

Public Functions

explicit iterator(const Pixels &pixels, bool begin = true)
constructor

virtual ~iterator() = default

inline value_type operator*() const
dereferencing

inline iterator &operator++()
pre-increment

inline bool operator!=(const iterator &other) const
inequality

162 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline bool operator==(const iterator &other) const
equality

Protected Attributes

const Pixels &pixels
ref to pixels in cell

size_t index
index of currently pointed-to pixel

class iterator : public std::vector::iterator<T*>
#include <ref_vector.hh> iterator over muGrid::RefVector

Public Functions

inline iterator(Parent &iterator)
copy constructor

inline iterator(Parent &&iterator)
move constructor

inline T &operator*()
dereference

Private Types

using Parent = typename std::vector<T*>::iterator

class iterator

Public Types

using value_type = Eigen::Map<Vector_t>

using value_type_const = Eigen::Map<const Vector_t>

163

µSpectre Documentation, Release v0.1

Public Functions

inline explicit iterator(const Vectors_t &data, const Dim_t &dim, bool begin = true)
constructor

virtual ~iterator() = default

inline value_type_const operator*() const
dereferencing

inline iterator &operator++()
pre-increment

inline iterator &operator--()

inline bool operator!=(const iterator &other)
inequality

inline bool operator==(const iterator &other) const
equality

Protected Attributes

const Vectors_t &vectors

Dim_t dim

size_t index

template<Mapping MutIter>

class Iterator
#include <state_field_map.hh> iterator type

Iterator class for muGrid::StateFieldMap

Public Types

using StateFieldMap_t = std::conditional_t<MutIter == Mapping::Const, const StateFieldMap,
StateFieldMap>

convenience alias

using StateWrapper_t = typename StateFieldMap::template StateWrapper<MutIter>
const-correct proxy for iterates

164 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

Iterator() = delete
Deleted default constructor.

Iterator(StateFieldMap_t &state_field_map, size_t index)
constructor (should never have to be called by the user)

Iterator(const Iterator &other) = delete
Copy constructor.

Iterator(Iterator &&other) = default
Move constructor.

virtual ~Iterator() = default
destructor

Iterator &operator=(const Iterator &other) = delete
Copy assignment operator.

Iterator &operator=(Iterator &&other) = default
Move assignment operator.

inline bool operator!=(const Iterator &other)
comparison

inline Iterator &operator++()
pre-increment

inline StateWrapper_t operator*()
dereference

Protected Attributes

StateFieldMap_t &state_field_map
reference back to the iterated map

size_t index
current iteration progress

template<Mapping MutIter>

class Iterator
#include <state_field_map_static.hh> froward declaration of iterator class

165

µSpectre Documentation, Release v0.1

Public Types

using StaticStateFieldMap_t = std::conditional_t<MutIter == Mapping::Const, const StaticStateFieldMap,
StaticStateFieldMap>

const correct iterated map

using StateWrapper_t = typename StaticStateFieldMap::template StaticStateWrapper<MutIter>
convenience alias to dererencing return type

Public Functions

Iterator() = delete
Default constructor.

Iterator(const Iterator &other) = delete
Copy constructor.

inline Iterator(StaticStateFieldMap_t &state_field_map, size_t index)
constructor with field map and index, not for user to call

Iterator(Iterator &&other) = default
Move constructor.

virtual ~Iterator() = default
Destructor.

Iterator &operator=(const Iterator &other) = delete
Copy assignment operator.

Iterator &operator=(Iterator &&other) = default
Move assignment operator.

inline bool operator!=(const Iterator &other) const
comparison

inline bool operator==(const Iterator &other) const
comparison (needed by akantu::iterator

inline Iterator &operator++()
pre-increment

inline StateWrapper_t operator*()
dereference

Protected Attributes

StaticStateFieldMap_t &state_field_map
reference bap to iterated map

size_t index
current progress in iteration

166 Chapter 7. Reference

µSpectre Documentation, Release v0.1

class iterator
#include <cell_split.hh> iterator type over all incompletetedly assigned pixel’s

Public Types

using value_type = std::tuple<DynCcoord_t, Real>
stl conformance

Public Functions

iterator(const IncompletePixels &pixels, Dim_t dim, bool begin = true)
constructor

virtual ~iterator() = default

value_type operator*() const
dereferencing

template<Dim_t DimS>
value_type deref_helper() const

iterator &operator++()
pre-increment

bool operator!=(const iterator &other)
inequality

inline bool operator==(const iterator &other) const
equality

template<Dim_t DimS>
auto deref_helper() const -> value_type

Protected Attributes

const IncompletePixels &incomplete_pixels

Dim_t dim

size_t index

template<Dim_t Dim, StressMeasure StressM, StrainMeasure StrainM>

struct Kirchhoff_stress
#include <stress_transformations_default_case.hh> Structure for functions returning Kirchhoff stress from other
stress measures

167

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t&&)

returns the converted stress

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t&&, Tangent_t&&)

returns the converted stress and stiffness

template<Dim_t Dim, StrainMeasure StrainM>

struct Kirchhoff_stress<Dim, StressMeasure::PK2, StrainM> : public
muSpectre::MatTB::internal::Kirchhoff_stress<Dim, StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_PK2_impl.hh> Specialisation for the case where we get material stress (Piola-
Kirchhoff-2, PK2) and we need to have Kirchhoff stress ()

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&S)

returns the converted stress

template<Dim_t Dim>

class LamCombination

Public Types

using Stiffness_t = typename LamHomogen<Dim, Formulation::small_strain>::Stiffness_t

using Stress_t = typename LamHomogen<Dim, Formulation::small_strain>::Stress_t

Public Functions

template<>
auto lam_C_combine(const Eigen::MatrixBase<Derived1> &C_1, const Eigen::MatrixBase<Derived2>

&C_2, const Real &ratio) -> Stiffness_t

template<>
auto lam_C_combine(const Eigen::MatrixBase<Derived1> &C_1, const Eigen::MatrixBase<Derived2>

&C_2, const Real &ratio) -> Stiffness_t

template<class Derived1, class Derived2>
auto lam_S_combine(const Eigen::MatrixBase<Derived1> &S_1, const Eigen::MatrixBase<Derived2>

&S_2, const Real &ratio) -> Stress_t

168 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Derived1, class Derived2>
static inline Stress_t lam_S_combine(const Eigen::MatrixBase<Derived1> &S_1, const

Eigen::MatrixBase<Derived2> &S_2, const Real &ratio)
This functions calculate the resultant stress and tangent matrices according to the computed E_1 and E_2
from the solver.

template<class Derived1, class Derived2>
static Stiffness_t lam_C_combine(const Eigen::MatrixBase<Derived1> &C_1, const

Eigen::MatrixBase<Derived2> &C_2, const Real &ratio)

template<Dim_t Dim, Formulation Form>

class LamHomogen

Public Types

using Vec_t = Eigen::Matrix<Real, Dim, 1>
typedefs for data handled by this interface

using Stiffness_t = muGrid::T4Mat<Real, Dim>

using Strain_t = Eigen::Matrix<Real, Dim, Dim>

using Stress_t = Strain_t

using Equation_index_t = std::array<std::array<Dim_t, 2>, Dim>

using Equation_stiffness_t = Eigen::Matrix<Real, Dim, Dim>

using Equation_strain_t = Eigen::Matrix<Real, Dim, 1>

using Equation_stress_t = Equation_strain_t

using Parallel_index_t = std::conditional_t<Form == Formulation::finite_strain,
std::array<std::array<Dim_t, 2>, Dim * (Dim - 1)>, std::array<std::array<Dim_t, 2>, (Dim - 1) * (Dim - 1)>>

using Parallel_strain_t = std::conditional_t<Form == Formulation::finite_strain, Eigen::Matrix<Real,
Dim * (Dim - 1), 1>, Eigen::Matrix<Real, (Dim - 1) * (Dim - 1), 1>>

using Parallel_stress_t = Parallel_strain_t

using Function_t = std::function<std::tuple<Stress_t, Stiffness_t>(const Eigen::Ref<const Strain_t>&)>

169

µSpectre Documentation, Release v0.1

Public Functions

template<class Derived1, class Derived2>
auto make_total_strain(const Eigen::MatrixBase<Derived1> &E_eq, const Eigen::MatrixBase<Derived2>

&E_para) -> Strain_t

template<class Derived>
auto get_equation_stiffness(const Eigen::MatrixBase<Derived> &C) -> Equation_stiffness_t

template<class Derived1, class Derived2>
auto delta_equation_stress_stiffness_eval(const Function_t &mat_1_stress_eval, const Function_t

&mat_2_stress_eval, const
Eigen::MatrixBase<Derived1> &strain_1, const
Eigen::MatrixBase<Derived2> &strain_2, const
RotatorNormal<Dim> &rotator, const Real &ratio) ->
std::tuple<Equation_stress_t, Equation_stiffness_t, Real>

template<class Derived1, class Derived2>
auto delta_equation_stress_stiffness_eval_strain_1(const Function_t &mat_1_stress_eval, const

Function_t &mat_2_stress_eval, const
Eigen::MatrixBase<Derived1>
&strain_0_rot, const
Eigen::MatrixBase<Derived2>
&strain_1_rot, const RotatorNormal<Dim>
&rotator, const Real &ratio) ->
std::tuple<Equation_stress_t,
Equation_stiffness_t, Real>

template<class Derived1, class Derived2>
auto lam_stress_combine(const Eigen::MatrixBase<Derived1> &stress_1, const

Eigen::MatrixBase<Derived2> &stress_2, const Real &ratio) -> Stress_t

These functions are used as intrface for combination functions, They are also used for carrying out the stress
transformation necessary for combining stifness matrix in Finite-Strain formulation because the combining
formula from the bokk “Theory of Composites” written by “Graeme

Miltonare” for symmetric stifness matrices such as C and we have to transform stress to PK2 in order to be
able to use it

template<>
constexpr auto get_equation_indices() -> Equation_index_t

template<>
constexpr auto get_equation_indices() -> Equation_index_t

template<>
constexpr auto get_equation_indices() -> Equation_index_t

template<>
constexpr auto get_equation_indices() -> Equation_index_t

template<>
constexpr auto get_parallel_indices() -> Parallel_index_t

template<>
constexpr auto get_parallel_indices() -> Parallel_index_t

template<>

170 Chapter 7. Reference

µSpectre Documentation, Release v0.1

constexpr auto get_parallel_indices() -> Parallel_index_t

template<>
constexpr auto get_parallel_indices() -> Parallel_index_t

template<class Derived>
auto get_equation_stress(const Eigen::MatrixBase<Derived> &S_total) -> Equation_stress_t

template<class Derived>
auto get_parallel_stress(const Eigen::MatrixBase<Derived> &S_total) -> Parallel_stress_t

template<class Derived>
auto get_parallel_strain(const Eigen::MatrixBase<Derived> &E_total) -> Parallel_strain_t

template<class Derived>
auto get_equation_strain(const Eigen::MatrixBase<Derived> &E_total) -> Equation_strain_t

template<class Derived1, class Derived2>
auto linear_eqs(const Real &ratio, const Eigen::MatrixBase<Derived1> &E_0_eq, const

Eigen::MatrixBase<Derived2> &E_1_eq) -> Equation_strain_t

template<class Derived1, class Derived2>
auto make_total_stress(const Eigen::MatrixBase<Derived1> &S_eq, const Eigen::MatrixBase<Derived2>

&S_para) -> Stress_t

Public Static Functions

static inline constexpr Parallel_index_t get_parallel_indices()

static inline constexpr Equation_index_t get_equation_indices()

template<class Derived>
static inline Equation_strain_t get_equation_strain(const Eigen::MatrixBase<Derived> &E_total)

template<class Derived>
static inline Equation_stress_t get_equation_stress(const Eigen::MatrixBase<Derived> &S_total)

template<class Derived>
static Equation_stiffness_t get_equation_stiffness(const Eigen::MatrixBase<Derived> &C)

template<class Derived1>
static inline Parallel_strain_t get_parallel_strain(const Eigen::MatrixBase<Derived1> &E)

template<class Derived1>
static inline Parallel_stress_t get_parallel_stress(const Eigen::MatrixBase<Derived1> &S)

template<class Derived1, class Derived2>
static Strain_t make_total_strain(const Eigen::MatrixBase<Derived1> &E_eq, const

Eigen::MatrixBase<Derived2> &E_para)

template<class Derived1, class Derived2>
static inline Stress_t make_total_stress(const Eigen::MatrixBase<Derived1> &S_eq, const

Eigen::MatrixBase<Derived2> &S_para)

template<class Derived1, class Derived2>

171

µSpectre Documentation, Release v0.1

static inline Equation_strain_t linear_eqs(const Real &ratio, const Eigen::MatrixBase<Derived1> &E_0,
const Eigen::MatrixBase<Derived2> &E_1)

template<class Derived1, class Derived2>
static std::tuple<Equation_stress_t, Equation_stiffness_t, Real> delta_equation_stress_stiffness_eval(const

Func-
tion_t
&mat_1_stress_eval,
const
Func-
tion_t
&mat_2_stress_eval,
const
Eigen::MatrixBase<Derived1>
&E_1,
const
Eigen::MatrixBase<Derived2>
&E_2,
const
Ro-
ta-
torNor-
mal<Dim>
&ro-
ta-
tor,
const
Real
&ra-
tio)

the objective in homogenisation of a single laminate pixel is equating the stress in the serial directions so
the difference of stress between their layers should tend to zero. this function return the stress difference
and the difference of Stiffness matrices which is used as the Jacobian in the solution process

template<class Derived1, class Derived2>

172 Chapter 7. Reference

µSpectre Documentation, Release v0.1

static std::tuple<Equation_stress_t, Equation_stiffness_t, Real> delta_equation_stress_stiffness_eval_strain_1(const
Func-
tion_t
&mat_1_stress_eval,
const
Func-
tion_t
&mat_2_stress_eval,
const
Eigen::MatrixBase<Derived1>
&E_0,
const
Eigen::MatrixBase<Derived2>
&E_1_rot,
const
Ro-
ta-
torNor-
mal<Dim>
&ro-
ta-
tor,
const
Real
&ra-
tio)

static inline Real del_energy_eval(const Real &del_E_norm, const Real &delta_S_norm)

the following functions claculate the energy computation error of the solution. it will be used in each step
of the solution to determine the relevant difference that implementation of that step has had on convergence
to the solution.

template<class Derived1, class Derived2>
static Stress_t lam_stress_combine(const Eigen::MatrixBase<Derived1> &stress_1, const

Eigen::MatrixBase<Derived2> &stress_2, const Real &ratio)
These functions are used as intrface for combination functions, They are also used for carrying out the stress
transformation necessary for combining stifness matrix in Finite-Strain formulation because the combining
formula from the bokk “Theory of Composites” are for symmetric stifness matrices such as C and we have
to transform stress to PK2 in order to be able to use it

static Stiffness_t lam_stiffness_combine(const Eigen::Ref<Stiffness_t> &stiffness_1, const
Eigen::Ref<Stiffness_t> &stiffness_2, const Real &ratio, const
Eigen::Ref<Strain_t> &F_1, const Eigen::Ref<Stress_t> &F_2,
const Eigen::Ref<Strain_t> &P_1, const Eigen::Ref<Stress_t>
&P_2, const Eigen::Ref<Strain_t> &F, const
Eigen::Ref<Stress_t> &P)

static std::tuple<Dim_t, Real, Strain_t, Strain_t> laminate_solver(const Eigen::Ref<Strain_t>
&strain_coord, const Function_t
&mat_1_stress_eval, const Function_t
&mat_2_stress_eval, const Real &ratio,
const Eigen::Ref<Vec_t> &normal_vec,
const Real tol = 1e-10, const Dim_t
max_iter = 1000)

This is the main solver function that might be called staically from an external file. this will return the

173

µSpectre Documentation, Release v0.1

resultant stress and stiffness tensor according to interanl “equilibrium” of the lamiante. The inputs are : 1-
global Strain 2- stress calculation function of the layer 1 3- stress calculation function of the layer 2 4- the
ratio of the first material in the laminate sturucture of the pixel 5- the normal vector of the interface of two
layers 6- the tolerance error for the internal solution of the laminate pixel 7- the maximum iterations for the
internal solution of the laminate pixel

static Stress_t evaluate_stress(const Eigen::Ref<Strain_t> &strain_coord, const Function_t
&mat_1_stress_eval, const Function_t &mat_2_stress_eval, const Real
&ratio, const Eigen::Ref<Vec_t> &normal_vec, const Real tol = 1e-10,
const Dim_t max_iter = 1000)

static std::tuple<Stress_t, Stiffness_t> evaluate_stress_tangent(const Eigen::Ref<Strain_t>
&strain_coord, const Function_t
&mat_1_stress_eval, const Function_t
&mat_2_stress_eval, const Real &ratio,
const Eigen::Ref<Vec_t> &normal_vec,
const Real tol = 1e-10, const Dim_t
max_iter = 1000)

class LocalFieldCollection : public muGrid::FieldCollection
#include <field_collection_local.hh> muGrid::LocalFieldCollection derives from
muGrid::FieldCollection and stores local fields, i.e. fields that are only defined for a subset of all
pixels/voxels in the computational domain. The coordinates of these active pixels are explicitly stored by this
field collection. muGrid::LocalFieldCollection::add_pixel allows to add individual pixels/voxels to
the field collection.

Public Types

using Parent = FieldCollection
alias for base class

Public Functions

LocalFieldCollection() = delete
Default constructor.

LocalFieldCollection(Dim_t spatial_dimension, Dim_t nb_quad_pts)
Constructor

Parameters
• spatial_dimension – spatial dimension of the field (can be muGrid::Unknown, e.g., in

the case of the local fields for storing internal material variables)

• nb_quad_pts – number of quadrature points per pixel/voxel

LocalFieldCollection(const LocalFieldCollection &other) = delete
Copy constructor.

LocalFieldCollection(LocalFieldCollection &&other) = default
Move constructor.

174 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual ~LocalFieldCollection() = default
Destructor.

LocalFieldCollection &operator=(const LocalFieldCollection &other) = delete
Copy assignment operator.

LocalFieldCollection &operator=(LocalFieldCollection &&other) = delete
Move assignment operator.

void add_pixel(const size_t &global_index)
Insert a new pixel/voxel into the collection.

Parameters
global_index – refers to the linear index this pixel has in the global field collection defining
the problem space

void initialise()
Freeze the set of pixels this collection is responsible for and allocate memory for all fields of the collection.
Fields added lateron will have their memory allocated upon construction

LocalFieldCollection get_empty_clone() const
obtain a new field collection with the same domain and pixels

inline std::map<size_t, size_t> &get_global_to_local_index_map()

Protected Attributes

std::map<size_t, size_t> global_to_local_index_map = {}

template<class FieldMapType>

class MappedField
#include <mapped_field.hh> MappedFields are a combination of a field and an associated map, and as such
it does not introduce any new functionality that Fields and FieldMaps do not already possess. They provide a
convenience structure for the default use case of internal variables, which are typically used only by a single
material and always the same way.

Public Types

using Scalar = typename FieldMapType::Scalar
stored scalar type

using Return_t = typename FieldMapType::template Return_t<FieldMapType::FieldMutability()>
return type for iterators over this- map

using iterator = typename FieldMapType::iterator
iterator over this map

using const_iterator = typename FieldMapType::const_iterator
constant iterator over this map

175

µSpectre Documentation, Release v0.1

Public Functions

MappedField() = delete
Default constructor.

template<bool StaticConstructor = IsStatic(), std::enable_if_t<StaticConstructor, int> = 0>
inline MappedField(const std::string &unique_name, FieldCollection &collection)

Constructor with name and collection for statically sized mapped fields

template<bool StaticConstructor = IsStatic(), std::enable_if_t<not StaticConstructor, int> = 0>
inline MappedField(const std::string &unique_name, const Dim_t &nb_rows, const Dim_t &nb_cols, const

Iteration &iter_type, FieldCollection &collection)
Constructor for dynamically sized mapped field

Parameters
• unique_name – unique identifier for this field

• nb_rows – number of rows for the iterates

• nb_cols – number of columns for the iterates

• iter_type – whether to iterate over pixels or quadrature points

• collection – collection where the field is to be registered

MappedField(const MappedField &other) = delete
Copy constructor.

MappedField(MappedField &&other) = default
Move constructor.

virtual ~MappedField() = default
Destructor.

MappedField &operator=(const MappedField &other) = delete
Copy assignment operator.

MappedField &operator=(MappedField &&other) = default
Move assignment operator.

inline Return_t operator[](size_t index)
random access operator

inline iterator begin()
stl

inline iterator end()
stl

inline const_iterator begin() const
stl

inline const_iterator end() const
stl

inline TypedField<Scalar> &get_field()
return a reference to the mapped field

inline FieldMapType &get_map()
return a reference to the map

176 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

static inline constexpr bool IsStatic()
detemine at compile time whether the field map is statically sized

Protected Attributes

Dim_t nb_components
number of components stored per quadrature point

TypedField<Scalar> &field
reference to mapped field

FieldMapType map
associated field map

Protected Static Functions

template<bool StaticConstructor = IsStatic(), std::enable_if_t<not StaticConstructor, int> = 0>
static inline Dim_t compute_nb_components_dynamic(const Dim_t &nb_rows, const Dim_t &nb_cols,

const Iteration &iter_type, const std::string
&unique_name, FieldCollection &collection)

evaluate and return the number of components the dynamically mapped field needs to store per quadrature
point

template<bool StaticConstructor = IsStatic(), std::enable_if_t<StaticConstructor, int> = 0>
static inline Dim_t compute_nb_components_static(const std::string &unique_name, FieldCollection

&collection)
evaluate and return the number of components the statically mapped field needs to store per quadrature
point

template<class StateFieldMapType>

class MappedStateField
#include <mapped_state_field.hh> MappedStateFields are a combination of a state field and an associated map,
and as such it does not introduce any new functionality that StateFields and StateFieldMaps do not already
possess. They provide a convenience structure for the default use case of internal variables, which are typically
used only by a single material and always the same way.

Public Types

using Scalar = typename StateFieldMapType::Scalar
stored scalar type

using Return_t = typename StateFieldMapType::template
StaticStateWrapper<StateFieldMapType::FieldMutability()>

return type for iterators over this- map

177

µSpectre Documentation, Release v0.1

using iterator = typename StateFieldMapType::iterator
iterator over this map

using const_iterator = typename StateFieldMapType::const_iterator
constant iterator over this map

Public Functions

MappedStateField() = delete
Deleted default constructor.

inline MappedStateField(const std::string &unique_name, FieldCollection &collection)
Constructor with name and collection.

MappedStateField(const MappedStateField &other) = delete
Copy constructor.

MappedStateField(MappedStateField &&other) = default
Move constructor.

virtual ~MappedStateField() = default
Destructor.

MappedStateField &operator=(const MappedStateField &other) = delete
Copy assignment operator.

MappedStateField &operator=(MappedStateField &&other) = default
Move assignment operator.

inline Return_t operator[](size_t index)
random access operator

inline iterator begin()
stl

inline iterator end()
stl

inline const_iterator begin() const
stl

inline const_iterator end() const
stl

inline TypedStateField<Scalar> &get_state_field()
return a reference to the mapped state field

inline StateFieldMapType &get_map()
return a reference to the map

178 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Attributes

Dim_t nb_components
number of components stored per quadrature point

TypedStateField<Scalar> &state_field
ref to mapped state field

StateFieldMapType map
associated field map

Protected Static Functions

static inline Dim_t compute_nb_components(const std::string &unique_prefix, FieldCollection &collection)
evaluate and return the number of components the statically mapped state field needs to store per quadrature
point

class MaterialBase
#include <material_base.hh> base class for materials

Subclassed by muSpectre::MaterialMuSpectre< MaterialHyperElastoPlastic1< DimM >, DimM >, muSpec-
tre::MaterialMuSpectre< MaterialHyperElastoPlastic2< DimM >, DimM >, muSpectre::MaterialMuSpectre<
MaterialLinearAnisotropic< DimM >, DimM >, muSpectre::MaterialMuSpectre< MaterialLinearElastic1<
DimM >, DimM >, muSpectre::MaterialMuSpectre< MaterialLinearElastic2< DimM >, DimM >, muS-
pectre::MaterialMuSpectre< MaterialLinearElastic3< DimM >, DimM >, muSpectre::MaterialMuSpectre<
MaterialLinearElastic4< DimM >, DimM >, muSpectre::MaterialMuSpectre< MaterialLinearElastic-
Generic1< DimM >, DimM >, muSpectre::MaterialMuSpectre< MaterialLinearElasticGeneric2< DimM
>, DimM >, muSpectre::MaterialMuSpectre< MaterialStochasticPlasticity< DimM >, DimM >, muSpec-
tre::MaterialMuSpectre< STMaterialLinearElasticGeneric1< DimM, StrainM, StressM >, DimM >, muSpec-
tre::MaterialLaminate< DimM >, muSpectre::MaterialMuSpectre< Material, DimM >

Public Types

using DynMatrix_t = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>

Public Functions

MaterialBase() = delete
Default constructor.

MaterialBase(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&material_dimension, const Dim_t &nb_quad_pts)

Construct by name

Parameters
• name – of the material

• spatial_dimension – is the number of spatial dimension, i.e. the grid

179

µSpectre Documentation, Release v0.1

• material_dimension – is the material dimension (i.e., the dimension of constitutive law;
even for e.g. two-dimensional problems the constitutive law could live in three-dimensional
space for e.g. plane strain or stress problems)

• nb_quad_pts – is the number of quadrature points per grid cell

MaterialBase(const MaterialBase &other) = delete
Copy constructor.

MaterialBase(MaterialBase &&other) = delete
Move constructor.

virtual ~MaterialBase() = default
Destructor.

MaterialBase &operator=(const MaterialBase &other) = delete
Copy assignment operator.

MaterialBase &operator=(MaterialBase &&other) = delete
Move assignment operator.

virtual void add_pixel(const size_t &pixel_index)
take responsibility for a pixel identified by its cell coordinates WARNING: this won’t work for materials
with additional info per pixel (as, e.g. for eigenstrain), we need to pass more parameters. Materials of this
type need to overload add_pixel

virtual void add_pixel_split(const size_t &pixel_index, const Real &ratio)

void allocate_optional_fields(SplitCell is_cell_split = SplitCell::no)

virtual void initialise()
allocate memory, etc, but also: wipe history variables!

inline virtual void save_history_variables()
for materials with state variables, these typically need to be saved/updated an the end of each load increment,
the virtual base implementation does nothing, but materials with history variables need to implement this

const std::string &get_name() const
return the material’s name

inline Dim_t get_material_dimension()
material dimension for inheritance

virtual void compute_stresses(const muGrid::RealField &F, muGrid::RealField &P, const Formulation
&form, SplitCell is_cell_split = SplitCell::no) = 0

computes stress

void compute_stresses(const muGrid::Field &F, muGrid::Field &P, const Formulation &form, SplitCell
is_cell_split = SplitCell::no)

Convenience function to compute stresses, mostly for debugging and testing. Has runtime-cost associated
with compatibility-checking and conversion of the Field_t arguments that can be avoided by using the
version with strongly typed field references

virtual void compute_stresses_tangent(const muGrid::RealField &F, muGrid::RealField &P,
muGrid::RealField &K, const Formulation &form, SplitCell
is_cell_split = SplitCell::no) = 0

computes stress and tangent moduli

180 Chapter 7. Reference

µSpectre Documentation, Release v0.1

void compute_stresses_tangent(const muGrid::Field &F, muGrid::Field &P, muGrid::Field &K,
Formulation form, SplitCell is_cell_split = SplitCell::no)

Convenience function to compute stresses and tangent moduli, mostly for debugging and testing. Has
runtime-cost associated with compatibility-checking and conversion of the Field_t arguments that can be
avoided by using the version with strongly typed field references

Real get_assigned_ratio(const size_t &pixel_id)

void get_assigned_ratios(std::vector<Real> &pixel_assigned_ratios)

muGrid::RealField &get_assigned_ratio_field()

muGrid::LocalFieldCollection::PixelIndexIterable get_pixel_indices() const
return and iterable proxy over the indices of this material’s pixels

muGrid::LocalFieldCollection::IndexIterable get_quad_pt_indices() const
return and iterable proxy over the indices of this material’s quadrature points

inline Dim_t size() const
number of quadrature points assigned to this material

std::vector<std::string> list_fields() const
list the names of all internal fields

inline muGrid::LocalFieldCollection &get_collection()
gives access to internal fields

virtual std::tuple<DynMatrix_t, DynMatrix_t> constitutive_law_dynamic(const Eigen::Ref<const
DynMatrix_t> &strain, const
size_t &quad_pt_index, const
Formulation &form) = 0

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor)

Protected Attributes

const std::string name
material’s name (for output and debugging)

muGrid::LocalFieldCollection internal_fields
storage for internal variables

Dim_t material_dimension
spatial dimension of the material

field holding the assigned ratios of the material

std::unique_ptr<muGrid::MappedScalarField<Real, muGrid::Mapping::Mut>> assigned_ratio = {nullptr}

bool is_initialised = {false}

class MaterialError : public runtime_error
#include <material_base.hh> base class for material-related exceptions

181

µSpectre Documentation, Release v0.1

Public Functions

inline explicit MaterialError(const std::string &what)
constructor

inline explicit MaterialError(const char *what)
constructor

template<Dim_t DimM>

class MaterialEvaluator
#include <material_evaluator.hh> Small convenience class providing a common interface to evaluate materials
without the need to set up an entire homogenisation problem. Useful for debugging material laws.

Template Parameters
DimM – Dimensionality of the material

Public Types

using T2_t = Eigen::Matrix<Real, DimM, DimM>
shorthand for second-rank tensors

using T4_t = muGrid::T4Mat<Real, DimM>
shorthand for fourth-rank tensors

using T2_map = Eigen::Map<T2_t>
map of a second-rank tensor

using T4_map = muGrid::T4MatMap<Real, DimM>
map of a fourth-rank tensor

using T2_const_map = Eigen::Map<const T2_t>
const map of a second-rank tensor

using T4_const_map = muGrid::T4MatMap<Real, DimM, true>
const map of a fourth-rank tensor

using FieldColl_t = muGrid::GlobalFieldCollection
convenience alias

Public Functions

MaterialEvaluator() = delete
Default constructor.

inline explicit MaterialEvaluator(std::shared_ptr<MaterialBase> material)
constructor with a shared pointer to a Material

182 Chapter 7. Reference

µSpectre Documentation, Release v0.1

MaterialEvaluator(const MaterialEvaluator &other) = delete
Copy constructor.

MaterialEvaluator(MaterialEvaluator &&other) = default
Move constructor.

virtual ~MaterialEvaluator() = default
Destructor.

MaterialEvaluator &operator=(const MaterialEvaluator &other) = delete
Copy assignment operator.

MaterialEvaluator &operator=(MaterialEvaluator &&other) = default
Move assignment operator.

inline void save_history_variables()
for materials with state variables. See muSpectre::MaterialBase for details

inline T2_const_map evaluate_stress(const Eigen::Ref<const T2_t> &grad, const Formulation &form)

Evaluates the underlying materials constitutive law and returns the stress P or as a func-
tion of the placement gradient F or small strain tensor depending on the formulation
(muSpectre::Formulation::small_strain for (), muSpectre::Formulation::finite_strain
for P(F))

inline std::tuple<T2_const_map, T4_const_map> evaluate_stress_tangent(const Eigen::Ref<const T2_t>
&grad, const Formulation
&form)

Evaluates the underlying materials constitutive law and returns the the stress P or and the tangent mod-
uli K as a function of the placement gradient F or small strain tensor depending on the formulation
(muSpectre::Formulation::small_strain for (), muSpectre::Formulation::finite_strain
for P(F))

inline T4_t estimate_tangent(const Eigen::Ref<const T2_t> &grad, const Formulation &form, const Real
step, const FiniteDiff diff_type = FiniteDiff ::centred)

estimate the tangent using finite difference

inline void initialise()
initialise the material and the fields

Protected Functions

void check_init()
throws a runtime error if the material’s per-pixel data has not been set.

Protected Attributes

std::shared_ptr<MaterialBase> material
storage of the material is managed through a shared pointer

std::unique_ptr<FieldColl_t> collection
storage of the strain, stress and tangent fields is managed through a unique pointer

183

µSpectre Documentation, Release v0.1

muGrid::MappedT2Field<Real, Mapping::Mut, DimM> strain
strain field (independent variable)

muGrid::MappedT2Field<Real, Mapping::Mut, DimM> stress
stress field (result)

muGrid::MappedT4Field<Real, Mapping::Mut, DimM> tangent
field of tangent moduli (result)

bool is_initialised = {false}
whether the evaluator has been initialised

template<Dim_t DimM>

class MaterialHyperElastoPlastic1 : public
muSpectre::MaterialMuSpectre<MaterialHyperElastoPlastic1<DimM>, DimM>

#include <material_hyper_elasto_plastic1.hh> material implementation for hyper-elastoplastic constitu-
tive law. Note for developpers: this law is tested against a reference python implementation in
py_comparison_test_material_hyper_elasto_plastic1.py

Public Types

using Parent = MaterialMuSpectre<MaterialHyperElastoPlastic1<DimM>, DimM>
base class

using T2_t = Eigen::Matrix<Real, DimM, DimM>
short-hand for second-rank tensors

using T4_t = muGrid::T4Mat<Real, DimM>
short-hand for fourth-rank tensors

using traits = MaterialMuSpectre_traits<MaterialHyperElastoPlastic1>
shortcut to traits

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

using T2StRef_t = typename muGrid::MappedT2StateField<Real, Mapping::Mut, DimM>::Return_t
type in which the previous strain state is referenced

using ScalarStRef_t = typename muGrid::MappedScalarStateField<Real, Mapping::Mut>::Return_t
type in which the previous plastic flow is referenced

184 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

MaterialHyperElastoPlastic1() = delete
Default constructor.

MaterialHyperElastoPlastic1(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, const Real &young, const Real &poisson, const Real
&tau_y0, const Real &H)

Constructor with name and material properties.

MaterialHyperElastoPlastic1(const MaterialHyperElastoPlastic1 &other) = delete
Copy constructor.

MaterialHyperElastoPlastic1(MaterialHyperElastoPlastic1 &&other) = delete
Move constructor.

virtual ~MaterialHyperElastoPlastic1() = default
Destructor.

MaterialHyperElastoPlastic1 &operator=(const MaterialHyperElastoPlastic1 &other) = delete
Copy assignment operator.

MaterialHyperElastoPlastic1 &operator=(MaterialHyperElastoPlastic1 &&other) = delete
Move assignment operator.

T2_t evaluate_stress(const T2_t &F, T2StRef_t F_prev, T2StRef_t be_prev, ScalarStRef_t plast_flow)
evaluates Kirchhoff stress given the current placement gradient F, the previous Gradient F1 and the cumu-
lated plastic flow

inline T2_t evaluate_stress(const T2_t &F, const size_t &quad_pt_index)
evaluates Kirchhoff stress given the local placement gradient and pixel id.

std::tuple<T2_t, T4_t> evaluate_stress_tangent(const T2_t &F, T2StRef_t F_prev, T2StRef_t be_prev,
ScalarStRef_t plast_flow)

evaluates Kirchhoff stress and tangent moduli given the current placement gradient F, the previous Gradient
F1 and the cumulated plastic flow

inline std::tuple<T2_t, T4_t> evaluate_stress_tangent(const T2_t &F, const size_t &quad_pt_index)
evaluates Kirchhoff stressstiffness and tangent moduli given the local placement gradient and pixel id.

virtual void save_history_variables() override
The statefields need to be cycled at the end of each load increment

virtual void initialise() final
set the previous gradients to identity

inline muGrid::MappedScalarStateField<Real, Mapping::Mut> &get_plast_flow_field()
getter for internal variable field

inline muGrid::MappedT2StateField<Real, Mapping::Mut, DimM> &get_F_prev_field()
getter for previous gradient field F

inline muGrid::MappedT2StateField<Real, Mapping::Mut, DimM> &get_be_prev_field()
getterfor elastic left Cauchy-Green deformation tensor b

185

µSpectre Documentation, Release v0.1

Protected Types

using Worker_t = std::tuple<T2_t, Real, Real, T2_t, bool, muGrid::Decomp_t<DimM>>
result type of the stress calculation with intermediate results for tangent moduli calculation

Protected Functions

Worker_t stress_n_internals_worker(const T2_t &F, T2StRef_t &F_prev, T2StRef_t &be_prev,
ScalarStRef_t &plast_flow)

worker function computing stresses and internal variables

Protected Attributes

muGrid::MappedScalarStateField<Real, Mapping::Mut> plast_flow_field
storage for cumulated plastic flow

muGrid::MappedT2StateField<Real, Mapping::Mut, DimM> F_prev_field
storage for previous gradient F

muGrid::MappedT2StateField<Real, Mapping::Mut, DimM> be_prev_field
storage for elastic left Cauchy-Green deformation tensor b

const Real young
Young’s modulus.

const Real poisson
Poisson’s ratio.

const Real lambda
first Lamé constant

const Real mu
second Lamé constant (shear modulus)

const Real K
Bulk modulus.

const Real tau_y0
initial yield stress

const Real H
hardening modulus

std::unique_ptr<const muGrid::T4Mat<Real, DimM>> C_holder
stiffness tensor

186 Chapter 7. Reference

µSpectre Documentation, Release v0.1

const muGrid::T4Mat<Real, DimM> &C
ref to elastic tensor

template<Dim_t DimM>

class MaterialHyperElastoPlastic2 : public
muSpectre::MaterialMuSpectre<MaterialHyperElastoPlastic2<DimM>, DimM>

#include <material_hyper_elasto_plastic2.hh> material implementation for hyper-elastoplastic constitutive law.

Public Types

using Parent = MaterialMuSpectre<MaterialHyperElastoPlastic2<DimM>, DimM>
base class

using T2_t = Eigen::Matrix<Real, DimM, DimM>

using T4_t = muGrid::T4Mat<Real, DimM>

using traits = MaterialMuSpectre_traits<MaterialHyperElastoPlastic2>
shortcut to traits

using Field_t = muGrid::MappedScalarField<Real, Mapping::Const>
storage type for scalar material constant fields

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

using FlowField_t = muGrid::MappedScalarStateField<Real, Mapping::Mut>

using FlowField_ref = typename FlowField_t::Return_t

using PrevStrain_t = muGrid::MappedT2StateField<Real, Mapping::Mut, DimM>

using PrevStrain_ref = typename PrevStrain_t::Return_t

Public Functions

MaterialHyperElastoPlastic2() = delete
Default constructor.

MaterialHyperElastoPlastic2(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts)

Constructor with name.

187

µSpectre Documentation, Release v0.1

MaterialHyperElastoPlastic2(const MaterialHyperElastoPlastic2 &other) = delete
Copy constructor.

MaterialHyperElastoPlastic2(MaterialHyperElastoPlastic2 &&other) = delete
Move constructor.

virtual ~MaterialHyperElastoPlastic2() = default
Destructor.

MaterialHyperElastoPlastic2 &operator=(const MaterialHyperElastoPlastic2 &other) = delete
Copy assignment operator.

MaterialHyperElastoPlastic2 &operator=(MaterialHyperElastoPlastic2 &&other) = delete
Move assignment operator.

T2_t evaluate_stress(const T2_t &F, PrevStrain_ref F_prev, PrevStrain_ref be_prev, FlowField_ref
plast_flow, const Real lambda, const Real mu, const Real tau_y0, const Real H)

evaluates Kirchhoff stress given the current placement gradient F, the previous Gradient F1 and the cumu-
lated plastic flow

inline T2_t evaluate_stress(const T2_t &F, const size_t &pixel_index)
evaluates Kirchhoff stress given the local placement gradient and pixel id.

std::tuple<T2_t, T4_t> evaluate_stress_tangent(const T2_t &F, PrevStrain_ref F_prev, PrevStrain_ref
be_prev, FlowField_ref plast_flow, const Real lambda,
const Real mu, const Real tau_y0, const Real H, const
Real K)

evaluates Kirchhoff stress and tangent moduli given the current placement gradient F, the previous Gradient
F1 and the cumulated plastic flow

inline std::tuple<T2_t, T4_t> evaluate_stress_tangent(const T2_t &F, const size_t &pixel_index)
evaluates Kirchhoff stressstiffness and tangent moduli given the local placement gradient and pixel id.

virtual void save_history_variables() override
The statefields need to be cycled at the end of each load increment

virtual void initialise() final
set the previous gradients to identity

virtual void add_pixel(const size_t &pixel_id) final
overload add_pixel to write into loacal stiffness tensor

void add_pixel(const size_t &pixel_id, const Real &Youngs_modulus, const Real &Poisson_ratio, const Real
&tau_y0, const Real &H)

overload add_pixel to write into local stiffness tensor

inline muGrid::MappedScalarStateField<Real, Mapping::Mut> &get_plast_flow_field()
getter for internal variable field

inline muGrid::MappedT2StateField<Real, Mapping::Mut, DimM> &get_F_prev_field()
getter for previous gradient field F

inline muGrid::MappedT2StateField<Real, Mapping::Mut, DimM> &get_be_prev_field()
getterfor elastic left Cauchy-Green deformation tensor b

188 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Types

using Worker_t = std::tuple<T2_t, Real, Real, T2_t, bool, muGrid::Decomp_t<DimM>>
worker function computing stresses and internal variables

Protected Functions

Worker_t stress_n_internals_worker(const T2_t &F, PrevStrain_ref &F_prev, PrevStrain_ref
&be_prev, FlowField_ref &plast_flow, const Real lambda, const
Real mu, const Real tau_y0, const Real H)

Protected Attributes

FlowField_t plast_flow_field
storage for cumulated plastic flow

PrevStrain_t F_prev_field
storage for previous gradient F

PrevStrain_t be_prev_field
storage for elastic left Cauchy-Green deformation tensor b

Field_t lambda_field
storage for first Lamé constant

Field_t mu_field
storage for second Lamé constant (shear modulus)

Field_t tau_y0_field
storage for initial yield stress

Field_t H_field
storage for hardening modulus

Field_t K_field
storage for Bulk modulus

template<Dim_t DimM>

class MaterialLaminate : public muSpectre::MaterialBase

189

µSpectre Documentation, Release v0.1

Public Types

using Parent = MaterialBase
base class

using RealField = muGrid::RealField

using DynMatrix_t = Parent::DynMatrix_t

using MatBase_t = MaterialBase

using MatPtr_t = std::shared_ptr<MatBase_t>

using T2_t = Eigen::Matrix<Real, DimM, DimM>

using T4_t = muGrid::T4Mat<Real, DimM>

using VectorField_t = muGrid::RealField

using MappedVectorField_t = muGrid::MappedT1Field<Real, Mapping::Mut, DimM>

using VectorFieldMap_t = muGrid::T1FieldMap<Real, Mapping::Mut, DimM>

using ScalarField_t = muGrid::RealField

using MappedScalarField_t = muGrid::MappedScalarField<Real, Mapping::Mut>

using ScalarFieldMap_t = muGrid::ScalarFieldMap<Real, Mapping::Mut>

using Strain_t = Eigen::Matrix<Real, DimM, DimM>

using Stress_t = Strain_t

using Stiffness_t = muGrid::T4Mat<Real, DimM>

using NeedTangent = MatTB::NeedTangent
type used to determine whether the muSpectre::MaterialMuSpectre::iterable_proxy evaluate only
stresses or also tangent stiffnesses

using traits = MaterialMuSpectre_traits<MaterialLaminate>
traits of this material

190 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

MaterialLaminate() = delete
Default constructor.

MaterialLaminate(const std::string &name, const Dim_t &spatial_dimension, const Dim_t &nb_quad_pts)
Constructor with name and material properties.

MaterialLaminate(const MaterialLaminate &other) = delete
Copy constructor.

MaterialLaminate(MaterialLaminate &&other) = delete
Move constructor.

virtual ~MaterialLaminate() = default
Destructor.

template<typename Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t &pixel_index,

const Formulation &form)

evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor)

template<typename Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t

&pixel_index, const Formulation &form)

evaluates second Piola-Kirchhoff stress and its corresponding tangent given the Green-Lagrange strain (or
Cauchy stress and its corresponding tangetn if called with a small strain tensor)

template<Formulation Form, class Strains, class Stresses>
void constitutive_law(const Strains &strains, Stresses &stress, const size_t &quad_pt_id)

template<Formulation Form, class Strains, class Stresses>
void constitutive_law(const Strains &strains, Stresses &stress, const size_t &quad_pt_id, const Real

&ratio)

template<Formulation Form, class Strains, class Stresses>
void constitutive_law_tangent(const Strains &strains, Stresses &stresses, const size_t &quad_pt_id)

template<Formulation Form, class Strains, class Stresses>
void constitutive_law_tangent(const Strains &strains, Stresses &stresses, const size_t &quad_pt_id,

const Real &ratio)

template<Formulation Form, class Strains_t>
decltype(auto) constitutive_law(const Strains_t &Strains, const size_t &quad_pt_id)

template<Formulation Form, class Strains_t>
decltype(auto) constitutive_law_tangent(const Strains_t &Strains, const size_t &quad_pt_id)

virtual void compute_stresses(const RealField &F, RealField &P, const Formulation &form, SplitCell
is_cell_split) final

computes stress

virtual void compute_stresses_tangent(const RealField &F, RealField &P, RealField &K, const
Formulation &form, SplitCell is_cell_split) final

stress and tangent modulus

191

µSpectre Documentation, Release v0.1

virtual void add_pixel(const size_t &pixel_id) final
overload add_pixel to write into volume ratio and normal vectors and . . .

void add_pixel(const size_t &pixel_id, MatPtr_t mat1, MatPtr_t mat2, const Real &ratio, const
Eigen::Ref<const Eigen::Matrix<Real, Eigen::Dynamic, 1>> &normal_Vector)

overload add_pixel to add underlying materials and their ratio and interface direction to the material lami-
ante

void add_pixels_precipitate(const std::vector<Ccoord_t<DimM>> &intersected_pixels, const
std::vector<Dim_t> &intersected_pixels_id, const std::vector<Real>
&intersection_ratios, const std::vector<Eigen::Matrix<Real, DimM, 1>>
&intersection_normals, MatPtr_t mat1, MatPtr_t mat2)

This function adds pixels according to the precipitate intersected pixels and the materials incolved

virtual std::tuple<DynMatrix_t, DynMatrix_t> constitutive_law_dynamic(const Eigen::Ref<const
DynMatrix_t> &strain, const
size_t &pixel_index, const
Formulation &form) final

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor)

Public Static Functions

static MaterialLaminate<DimM> &make(Cell &cell, const std::string &name)
Factory.

template<class ...ConstructorArgs>
static std::tuple<std::shared_ptr<MaterialLaminate<DimM>>, MaterialEvaluator<DimM>> make_evaluator(ConstructorArgs&&...

args)

Protected Functions

template<Formulation Form, SplitCell IsCellSplit>
inline void compute_stresses_worker(const RealField &F, RealField &P)

__attribute__((visibility("default")))
computes stress with the formulation available at compile time attribute required by g++-6 and g++-7
because of this bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947

template<Formulation Form, SplitCell IsCellSplit>
inline void compute_stresses_worker(const RealField &F, RealField &P, RealField &K)

__attribute__((visibility("default")))
computes stress with the formulation available at compile time attribute required by g++-6 and g++-7
because of this bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947

192 Chapter 7. Reference

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947

µSpectre Documentation, Release v0.1

Protected Attributes

MappedVectorField_t normal_vector_field
field holding the normal vector of the interface of the layers

MappedScalarField_t volume_ratio_field
field holding the normal vector

std::vector<MatPtr_t> material_left_vector = {}

std::vector<MatPtr_t> material_right_vector = {}

template<Dim_t DimM>

class MaterialLinearAnisotropic : public muSpectre::MaterialMuSpectre<MaterialLinearAnisotropic<DimM>,
DimM>

#include <material_linear_anisotropic.hh> Material implementation for anisotropic constitutive law

Subclassed by muSpectre::MaterialLinearOrthotropic< DimM >

Public Types

using Parent = MaterialMuSpectre<MaterialLinearAnisotropic, DimM>
base class

using Stiffness_t = muGrid::T4Mat<Real, DimM>

using traits = MaterialMuSpectre_traits<MaterialLinearAnisotropic>
traits of this material

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

Public Functions

MaterialLinearAnisotropic() = delete
Default constructor.

MaterialLinearAnisotropic(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, const std::vector<Real> &input_c)

MaterialLinearAnisotropic(const MaterialLinearAnisotropic &other) = delete
Copy constructor.

MaterialLinearAnisotropic(MaterialLinearAnisotropic &&other) = delete
Move constructor.

193

µSpectre Documentation, Release v0.1

virtual ~MaterialLinearAnisotropic() = default
Destructor.

template<class s_t>
inline auto evaluate_stress(s_t &&E) -> decltype(auto)

template<class s_t>
inline auto evaluate_stress(s_t &&E, const size_t&) -> decltype(auto)

template<class s_t>
inline auto evaluate_stress_tangent(s_t &&E) -> decltype(auto)

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor) and the local stiffness tensor.

template<class s_t>
inline auto evaluate_stress_tangent(s_t &&E, const size_t&) -> decltype(auto)

Public Static Functions

static auto c_maker(std::vector<Real> input) -> Stiffness_t

Protected Attributes

std::unique_ptr<Stiffness_t> C_holder

Stiffness_t &C
memory for stiffness tensor

stiffness tensor

template<Dim_t DimM>

class MaterialLinearElastic1 : public muSpectre::MaterialMuSpectre<MaterialLinearElastic1<DimM>,
DimM>

#include <material_linear_elastic1.hh> DimM material_dimension (dimension of constitutive law)

implements objective linear elasticity

Public Types

using Parent = MaterialMuSpectre<MaterialLinearElastic1, DimM>
base class

using Stiffness_t = T4Mat<Real, DimM>
short hand for the type of the elastic tensor

using traits = MaterialMuSpectre_traits<MaterialLinearElastic1>
traits of this material

194 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

Public Functions

MaterialLinearElastic1() = delete
Default constructor.

MaterialLinearElastic1(const MaterialLinearElastic1 &other) = delete
Copy constructor.

MaterialLinearElastic1(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, const Real &young, const Real &poisson)

Construct by name, Young’s modulus and Poisson’s ratio.

MaterialLinearElastic1(MaterialLinearElastic1 &&other) = delete
Move constructor.

virtual ~MaterialLinearElastic1() = default
Destructor.

MaterialLinearElastic1 &operator=(const MaterialLinearElastic1 &other) = delete
Copy assignment operator.

MaterialLinearElastic1 &operator=(MaterialLinearElastic1 &&other) = delete
Move assignment operator.

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t&)

evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor)

template<class Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t&)

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor)

template<class Derived>
auto evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t&) -> decltype(auto)

template<class Derived>
auto evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t&) -> decltype(auto)

Protected Attributes

const Real young
Young’s modulus.

const Real poisson
Poisson’s ratio.

195

µSpectre Documentation, Release v0.1

const Real lambda
first Lamé constant

const Real mu
second Lamé constant (shear modulus)

std::unique_ptr<const Stiffness_t> C_holder
stiffness tensor

const Stiffness_t &C
ref to stiffness tensor

template<Dim_t DimM>

class MaterialLinearElastic2 : public muSpectre::MaterialMuSpectre<MaterialLinearElastic2<DimM>,
DimM>

#include <material_linear_elastic2.hh> implements objective linear elasticity with an eigenstrain per pixel

Public Types

using Parent = MaterialMuSpectre<MaterialLinearElastic2, DimM>
base class

using traits = MaterialMuSpectre_traits<MaterialLinearElastic2>
traits of this material

using StrainTensor = Eigen::Ref<const Eigen::Matrix<Real, DimM, DimM>>
reference to any type that casts to a matrix

Public Functions

MaterialLinearElastic2() = delete
Default constructor.

MaterialLinearElastic2(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, Real young, Real poisson)

Construct by name, Young’s modulus and Poisson’s ratio.

MaterialLinearElastic2(const MaterialLinearElastic2 &other) = delete
Copy constructor.

MaterialLinearElastic2(MaterialLinearElastic2 &&other) = delete
Move constructor.

virtual ~MaterialLinearElastic2() = default
Destructor.

MaterialLinearElastic2 &operator=(const MaterialLinearElastic2 &other) = delete
Copy assignment operator.

196 Chapter 7. Reference

µSpectre Documentation, Release v0.1

MaterialLinearElastic2 &operator=(MaterialLinearElastic2 &&other) = delete
Move assignment operator.

template<class s_t>
inline decltype(auto) evaluate_stress(s_t &&E, const size_t &quad_pt_index)

evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor)

template<class s_t>
inline decltype(auto) evaluate_stress_tangent(s_t &&E, const size_t &quad_pt_index)

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor)

virtual void add_pixel(const size_t &pixel_index) final
overload add_pixel to write into eigenstrain

void add_pixel(const size_t &pixel_index, const StrainTensor &E_eig)
overload add_pixel to write into eigenstrain

template<class s_t>
auto evaluate_stress(s_t &&E, const size_t &quad_pt_index) -> decltype(auto)

template<class s_t>
auto evaluate_stress_tangent(s_t &&E, const size_t &quad_pt_index) -> decltype(auto)

Protected Attributes

MaterialLinearElastic1<DimM> material
linear material without eigenstrain used to compute response

muGrid::MappedT2Field<Real, Mapping::Const, DimM> eigen_strains
storage for eigenstrain

template<Dim_t DimM>

class MaterialLinearElastic3 : public muSpectre::MaterialMuSpectre<MaterialLinearElastic3<DimM>,
DimM>

#include <material_linear_elastic3.hh> implements objective linear elasticity with an eigenstrain per pixel

Public Types

using Parent = MaterialMuSpectre<MaterialLinearElastic3, DimM>
base class

using NeedTangent = typename Parent::NeedTangent
type used to determine whether the muSpectre::MaterialMuSpectre::iterable_proxy evaluate only
stresses or also tangent stiffnesses

using traits = MaterialMuSpectre_traits<MaterialLinearElastic3>
global field collection

traits of this material

197

µSpectre Documentation, Release v0.1

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

using StiffnessField_t = muGrid::MappedT4Field<Real, Mapping::Const, DimM>
short hand for storage type of elastic tensors

Public Functions

MaterialLinearElastic3() = delete
Default constructor.

MaterialLinearElastic3(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts)

Construct by name.

MaterialLinearElastic3(const MaterialLinearElastic3 &other) = delete
Copy constructor.

MaterialLinearElastic3(MaterialLinearElastic3 &&other) = delete
Move constructor.

virtual ~MaterialLinearElastic3() = default
Destructor.

MaterialLinearElastic3 &operator=(const MaterialLinearElastic3 &other) = delete
Copy assignment operator.

MaterialLinearElastic3 &operator=(MaterialLinearElastic3 &&other) = delete
Move assignment operator.

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const typename

StiffnessField_t::Return_t &C)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor) and the local stiffness tensor.

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor) and the local pixel id.

template<class Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const typename

StiffnessField_t::Return_t &C)
evaluates both second Piola-Kirchhoff stress and tangent moduli given the Green-Lagrange strain (or
Cauchy stress and tangent moduli if called with a small strain tensor) and the local tangent moduli ten-
sor.

template<class Derived>

198 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t
&quad_pt_index)

evaluates both second Piola-Kirchhoff stress and tangent moduli given the Green-Lagrange strain (or
Cauchy stress and tangent moduli if called with a small strain tensor) and the local pixel id.

virtual void add_pixel(const size_t &pixel_index) final
overload add_pixel to write into loacal stiffness tensor

void add_pixel(const size_t &pixel_index, const Real &Young, const Real &PoissonRatio)
overload add_pixel to write into local stiffness tensor

template<class Derived>
auto evaluate_stress(const Eigen::MatrixBase<Derived> &E, const typename StiffnessField_t::Return_t

&C) -> decltype(auto)

template<class Derived>
auto evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const typename

StiffnessField_t::Return_t &C) -> decltype(auto)

Protected Attributes

StiffnessField_t C_field
storage for stiffness tensor

template<Dim_t DimM>

class MaterialLinearElastic4 : public muSpectre::MaterialMuSpectre<MaterialLinearElastic4<DimM>,
DimM>

#include <material_linear_elastic4.hh> implements objective linear elasticity with an eigenstrain per pixel

Public Types

using Parent = MaterialMuSpectre<MaterialLinearElastic4, DimM>
base class

using NeedTangent = typename Parent::NeedTangent
type used to determine whether the muSpectre::MaterialMuSpectre::iterable_proxy evaluate only
stresses or also tangent stiffnesses

using Stiffness_t = Eigen::TensorFixedSize<Real, Eigen::Sizes<DimM, DimM, DimM, DimM>>
global field collection

using traits = MaterialMuSpectre_traits<MaterialLinearElastic4>
traits of this material

using Field_t = muGrid::MappedScalarField<Real, Mapping::Const>
storage type for Lamé constants

199

µSpectre Documentation, Release v0.1

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

Public Functions

MaterialLinearElastic4() = delete
Default constructor.

explicit MaterialLinearElastic4(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts)

Construct by name.

MaterialLinearElastic4(const MaterialLinearElastic4 &other) = delete
Copy constructor.

MaterialLinearElastic4(MaterialLinearElastic4 &&other) = delete
Move constructor.

virtual ~MaterialLinearElastic4() = default
Destructor.

MaterialLinearElastic4 &operator=(const MaterialLinearElastic4 &other) = delete
Copy assignment operator.

MaterialLinearElastic4 &operator=(MaterialLinearElastic4 &&other) = delete
Move assignment operator.

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const Real &lambda, const

Real &mu)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor), the first Lame constant (lambda) and the second Lame constant (shear modulus/mu).

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor), and the local pixel id.

template<class Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const Real

&lambda, const Real &mu)
evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor), the first Lame constant (lambda) and the second Lame
constant (shear modulus/mu).

template<class Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index)
evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and tangent moduli if called with a small strain tensor), and the local pixel id.

200 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual void add_pixel(const size_t &pixel_index) final
overload add_pixel to write into loacal stiffness tensor

void add_pixel(const size_t &pixel_index, const Real &Youngs_modulus, const Real &Poisson_ratio)
overload add_pixel to write into local stiffness tensor

template<class Derived>
auto evaluate_stress(const Eigen::MatrixBase<Derived> &E, const Real &lambda, const Real &mu) ->

decltype(auto)

template<class Derived>
auto evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const Real &lambda, const Real

&mu) -> decltype(auto)

Protected Attributes

Field_t lambda_field
storage for first Lamé constant

Field_t mu_field
storage for second Lamé constant (shear modulus)

template<Dim_t DimM>

class MaterialLinearElasticGeneric1 : public
muSpectre::MaterialMuSpectre<MaterialLinearElasticGeneric1<DimM>, DimM>

#include <material_linear_elastic_generic1.hh> forward declaration

Linear elastic law defined by a full stiffness tensor. Very generic, but not most efficient. Note: it is template by
ImpMaterial to make other materials to inherit form this class without any malfunctioning. i.e. the typeof classes
inherits from this class will be passed to MaterialMuSpectre and MAterialMuSpectre will be able to access their
types and methods directly without any interference of MaterialLinearElasticGeneric1.

Public Types

using Parent = MaterialMuSpectre<MaterialLinearElasticGeneric1<DimM>, DimM>
parent type

using CInput_t = Eigen::Ref<Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>, 0,
Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>>

generic input tolerant to python input

201

µSpectre Documentation, Release v0.1

Public Functions

MaterialLinearElasticGeneric1() = delete
Default constructor.

MaterialLinearElasticGeneric1(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, const CInput_t &C_voigt)

Constructor by name and stiffness tensor.

Parameters
• name – unique material name

• spatial_dimension – spatial dimension of the problem. This corresponds to the dimen-
sionality of the Cell

• nb_quad_pts – number of quadrature points per pixel

• C_voigt – elastic tensor in Voigt notation

MaterialLinearElasticGeneric1(const MaterialLinearElasticGeneric1 &other) = delete
Copy constructor.

MaterialLinearElasticGeneric1(MaterialLinearElasticGeneric1 &&other) = delete
Move constructor.

virtual ~MaterialLinearElasticGeneric1() = default
Destructor.

MaterialLinearElasticGeneric1 &operator=(const MaterialLinearElasticGeneric1 &other) = delete
Copy assignment operator.

MaterialLinearElasticGeneric1 &operator=(MaterialLinearElasticGeneric1 &&other) = delete
Move assignment operator.

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index = 0)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor). Note: the pixel index is ignored.

template<class Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index = 0)
evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor). Note: the pixel index is ignored.

inline const muGrid::T4Mat<Real, DimM> &get_C() const
return a reference to the stiffness tensor

template<class Derived1, class Derived2>
void make_C_from_C_voigt(const Eigen::MatrixBase<Derived1> &C_voigt, Eigen::MatrixBase<Derived2>

&C_holder)

template<class Derived>
auto evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t&) -> decltype(auto)

template<class Derived>
auto evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t&) -> decltype(auto)

202 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Attributes

std::unique_ptr<muGrid::T4Mat<Real, DimM>> C_holder

const muGrid::T4Mat<Real, DimM> &C
stiffness tensor

template<Dim_t DimM>

class MaterialLinearElasticGeneric2 : public
muSpectre::MaterialMuSpectre<MaterialLinearElasticGeneric2<DimM>, DimM>

#include <material_linear_elastic_generic2.hh> forward declaration

Implementation proper of the class

Public Functions

MaterialLinearElasticGeneric2() = delete
Default constructor.

MaterialLinearElasticGeneric2(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, const CInput_t &C_voigt)

Construct by name and elastic stiffness tensor.

MaterialLinearElasticGeneric2(const MaterialLinearElasticGeneric2 &other) = delete
Copy constructor.

MaterialLinearElasticGeneric2(MaterialLinearElasticGeneric2 &&other) = default
Move constructor.

virtual ~MaterialLinearElasticGeneric2() = default
Destructor.

MaterialLinearElasticGeneric2 &operator=(const MaterialLinearElasticGeneric2 &other) = delete
Copy assignment operator.

MaterialLinearElasticGeneric2 &operator=(MaterialLinearElasticGeneric2 &&other) = default
Move assignment operator.

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const Eigen::Map<const

Eigen::Matrix<Real, DimM, DimM>> &E_eig)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor)

template<class Derived>
inline decltype(auto) evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor) and the local pixel id

template<class Derived>

203

µSpectre Documentation, Release v0.1

inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const
Eigen::Map<const Eigen::Matrix<Real, DimM, DimM>>
&E_eig)

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor)

template<class Derived>
inline decltype(auto) evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const size_t

&quad_pt_index)
evaluates both second Piola-Kirchhoff stress and tangent moduli given the Green-Lagrange strain (or
Cauchy stress and stiffness if called with a small strain tensor) and the local pixel id

inline const muGrid::T4Mat<Real, DimM> &get_C() const
return a reference to the stiffness tensor

virtual void add_pixel(const size_t &pixel_index) final
overload add_pixel to write into eigenstrain

void add_pixel(const size_t &pixel_index, const StrainTensor &E_eig)
overload add_pixel to write into eigenstrain

template<class Derived>
auto evaluate_stress(const Eigen::MatrixBase<Derived> &E, const Eigen::Map<const

Eigen::Matrix<Real, DimM, DimM>> &E_eig) -> decltype(auto)

template<class Derived>
auto evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &E, const Eigen::Map<const

Eigen::Matrix<Real, DimM, DimM>> &E_eig) -> decltype(auto)

Protected Attributes

Law_t worker
elastic law without eigenstrain used as worker

muGrid::MappedT2Field<Real, Mapping::Const, DimM> eigen_field
storage for eigenstrain

underlying law to be evaluated

Private Types

using Parent = MaterialMuSpectre<MaterialLinearElasticGeneric2<DimM>, DimM>
parent type

using Law_t = MaterialLinearElasticGeneric1<DimM>
underlying worker class

using CInput_t = typename Law_t::CInput_t
generic input tolerant to python input

204 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using StrainTensor = Eigen::Ref<Eigen::Matrix<Real, DimM, DimM>>
reference to any type that casts to a matrix

using traits = MaterialMuSpectre_traits<MaterialLinearElasticGeneric2>
traits of this material

template<Dim_t DimM>

class MaterialLinearOrthotropic : public muSpectre::MaterialLinearAnisotropic<DimM>
#include <material_linear_orthotropic.hh> Material implementation for orthotropic constitutive law

Public Types

using Parent = MaterialLinearAnisotropic<DimM>
base class

using Stiffness_t = muGrid::T4Mat<Real, DimM>

using traits = MaterialMuSpectre_traits<MaterialLinearOrthotropic>
traits of this material

Public Functions

MaterialLinearOrthotropic() = delete
Default constructor.

MaterialLinearOrthotropic(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts, const std::vector<Real> &input)

MaterialLinearOrthotropic(const MaterialLinearOrthotropic &other) = delete
Copy constructor.

MaterialLinearOrthotropic(MaterialLinearOrthotropic &&other) = delete
Move constructor.

virtual ~MaterialLinearOrthotropic() = default
Destructor.

Public Static Functions

static MaterialLinearOrthotropic<DimM> &make(Cell &cell, const std::string &name, const
std::vector<Real> &input)

make function needs to be overloaded, because this class does not directly inherit from MaterialMuSpectre.
If this overload is not made, calls to make for MaterialLinearOrthotropic would call the constructor for
MaterialLinearAnisotropic

205

µSpectre Documentation, Release v0.1

Protected Functions

std::vector<Real> input_c_maker(const std::vector<Real> &input)

template<> std::array< bool, 6 > ret_flag

template<> std::array< bool, 21 > ret_flag

Protected Static Attributes

static constexpr std::array<std::size_t, 2> output_size = {6, 21}
these variable are used to determine which elements of the stiffness matrix should be replaced with the
inpts for the orthotropic material

static std::array<bool, output_size[DimM - 2]> ret_flag

template<class Material, Dim_t DimM>

class MaterialMuSpectre : public muSpectre::MaterialBase
#include <material_muSpectre_base.hh> material traits are used by muSpectre::MaterialMuSpectre to
break the circular dependence created by the curiously recurring template parameter. These traits must define

• these muSpectre::FieldMaps:

– StrainMap_t: typically a muSpectre::MatrixFieldMap for a constant second-order
muSpectre::TensorField

– StressMap_t: typically a muSpectre::MatrixFieldMap for a writable secord-order
muSpectre::TensorField

– TangentMap_t: typically a muSpectre::T4MatrixFieldMap for a writable fourth-order
muSpectre::TensorField

• strain_measure: the expected strain type (will be replaced by the small-strain tensor
muspectre::StrainMeasure::Infinitesimal in small strain computations)

• stress_measure: the measure of the returned stress. Is used by muspectre::MaterialMuSpectre to
transform it into Cauchy stress (muspectre::StressMeasure::Cauchy) in small-strain computations
and into first Piola-Kirchhoff stress muspectre::StressMeasure::PK1 in finite-strain computations

Base class for most convenient implementation of materials

Public Types

using NeedTangent = MatTB::NeedTangent
type used to determine whether the muSpectre::MaterialBase::iterable_proxy evaluate only
stresses or also tangent stiffnesses

using Parent = MaterialBase
base class

206 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using traits = MaterialMuSpectre_traits<Material>
traits for the CRTP subclass

using DynMatrix_t = Parent::DynMatrix_t

using Strain_t = Eigen::Matrix<Real, DimM, DimM>

using Stress_t = Strain_t

using Stiffness_t = muGrid::T4Mat<Real, DimM>

Public Functions

MaterialMuSpectre() = delete
Default constructor.

explicit MaterialMuSpectre(const std::string &name, const Dim_t &spatial_dimension, const Dim_t
&nb_quad_pts)

Construct by name.

MaterialMuSpectre(const MaterialMuSpectre &other) = delete
Copy constructor.

MaterialMuSpectre(MaterialMuSpectre &&other) = delete
Move constructor.

virtual ~MaterialMuSpectre() = default
Destructor.

MaterialMuSpectre &operator=(const MaterialMuSpectre &other) = delete
Copy assignment operator.

MaterialMuSpectre &operator=(MaterialMuSpectre &&other) = delete
Move assignment operator.

template<class ...InternalArgs>
void add_pixel_split(const size_t &pixel_id, Real ratio, InternalArgs... args)

void add_split_pixels_precipitate(const std::vector<size_t> &intersected_pixel_ids, const
std::vector<Real> &intersection_ratios)

virtual void compute_stresses(const muGrid::RealField &F, muGrid::RealField &P, const Formulation
&form, SplitCell is_cell_split = SplitCell::no) final

computes stress

virtual void compute_stresses_tangent(const muGrid::RealField &F, muGrid::RealField &P,
muGrid::RealField &K, const Formulation &form, SplitCell
is_cell_split = SplitCell::no) final

computes stress and tangent modulus

207

µSpectre Documentation, Release v0.1

virtual std::tuple<DynMatrix_t, DynMatrix_t> constitutive_law_dynamic(const Eigen::Ref<const
DynMatrix_t> &strain, const
size_t &pixel_index, const
Formulation &form) final

evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor)

Public Static Functions

template<class ...ConstructorArgs>
static Material &make(Cell &cell, const std::string &name, ConstructorArgs&&... args)

Factory. The ConstructorArgs refer the arguments after name

template<class ...ConstructorArgs>
static std::tuple<std::shared_ptr<Material>, MaterialEvaluator<DimM>> make_evaluator(ConstructorArgs&&...

args)
Factory takes all arguments after the name of the underlying Material’s constructor. E.g., if the underlying
material is a muSpectre::MaterialLinearElastic1<threeD>, these would be Young’s modulus and
Poisson’s ratio.

static inline constexpr Dim_t MaterialDimension()
return the material dimension at compile time

Protected Functions

template<Formulation Form, SplitCell is_cell_split = SplitCell::no>
inline void compute_stresses_worker(const muGrid::RealField &F, muGrid::RealField &P)

__attribute__((visibility("default")))
computes stress with the formulation available at compile time attribute required by g++-6 and g++-7
because of this bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947

template<Formulation Form, SplitCell is_cell_split = SplitCell::no>
inline void compute_stresses_worker(const muGrid::RealField &F, muGrid::RealField &P,

muGrid::RealField &K) __attribute__((visibility("default")))
computes stress with the formulation available at compile time attribute required by g++-6 and g++-7
because of this bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947

template<class Material>

struct MaterialMuSpectre_traits

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>
#include <material_hyper_elasto_plastic1.hh> traits for hyper-elastoplastic material

208 Chapter 7. Reference

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947

µSpectre Documentation, Release v0.1

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::Gradient}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::Kirchhoff }
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>
#include <material_hyper_elasto_plastic2.hh> traits for hyper-elastoplastic material

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::Gradient}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::Kirchhoff }
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLaminate<DimM>>

209

µSpectre Documentation, Release v0.1

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::Gradient}

static constexpr auto stress_measure = {StressMeasure::PK1}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>
#include <material_linear_elastic1.hh> traits for objective linear elasticity

210 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>
#include <material_linear_elastic2.hh> traits for objective linear elasticity with eigenstrain

Public Types

using StrainMap_t = muGrid::T2FieldMap<double, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<double, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<double, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>
#include <material_linear_elastic3.hh> traits for objective linear elasticity with eigenstrain

211

µSpectre Documentation, Release v0.1

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>
#include <material_linear_elastic4.hh> traits for objective linear elasticity with eigenstrain

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>
#include <material_linear_elastic_generic1.hh> traits for use by MaterialMuSpectre for crtp

212 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
global field collection

expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>
#include <material_linear_elastic_generic2.hh> traits for use by MaterialMuSpectre for crtp

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

213

µSpectre Documentation, Release v0.1

struct MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

struct MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>
#include <material_stochastic_plasticity.hh> traits for stochastic plasticity with eigenstrain

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

214 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Attributes

static constexpr auto strain_measure = {StrainMeasure::GreenLagrange}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMeasure::PK2}
declare what type of stress measure your law yields as output

template<Dim_t DimM, StrainMeasure StrainMIn, StressMeasure StressMOut>

struct MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM, StrainMIn, StressMOut>>
#include <s_t_material_linear_elastic_generic1.hh> traits for use by MaterialMuSpectre for crtp

Public Types

using StrainMap_t = muGrid::T2FieldMap<Real, Mapping::Const, DimM>
expected map type for strain fields

using StressMap_t = muGrid::T2FieldMap<Real, Mapping::Mut, DimM>
expected map type for stress fields

using TangentMap_t = muGrid::T4FieldMap<Real, Mapping::Mut, DimM>
expected map type for tangent stiffness fields

Public Static Attributes

static constexpr auto strain_measure = {StrainMIn}
declare what type of strain measure your law takes as input

static constexpr auto stress_measure = {StressMOut}
declare what type of stress measure your law yields as output

template<Dim_t DimM>

class MaterialStochasticPlasticity : public
muSpectre::MaterialMuSpectre<MaterialStochasticPlasticity<DimM>, DimM>

#include <material_stochastic_plasticity.hh> implements stochastic plasticity with an eigenstrain, Lame con-
stants and plastic flow per pixel.

215

µSpectre Documentation, Release v0.1

Public Types

using Parent = MaterialMuSpectre<MaterialStochasticPlasticity, DimM>
base class

using Vector_t = Eigen::Matrix<Real, Eigen::Dynamic, 1>
dynamic vector type for interactions with numpy/scipy/solvers etc.

using EigenStrainArg_t = Eigen::Map<Eigen::Matrix<Real, DimM, DimM>>

using traits = MaterialMuSpectre_traits<MaterialStochasticPlasticity>
traits of this material

using Hooke = typename MatTB::Hooke<DimM, typename traits::StrainMap_t::reference, typename
traits::TangentMap_t::reference>

Hooke’s law implementation.

Public Functions

MaterialStochasticPlasticity() = delete
Default constructor.

explicit MaterialStochasticPlasticity(const std::string &name, const Dim_t &spatial_dimension, const
Dim_t &nb_quad_pts)

Construct by name.

MaterialStochasticPlasticity(const MaterialStochasticPlasticity &other) = delete
Copy constructor.

MaterialStochasticPlasticity(MaterialStochasticPlasticity &&other) = delete
Move constructor.

virtual ~MaterialStochasticPlasticity() = default
Destructor.

MaterialStochasticPlasticity &operator=(const MaterialStochasticPlasticity &other) = delete
Copy assignment operator.

MaterialStochasticPlasticity &operator=(MaterialStochasticPlasticity &&other) = delete
Move assignment operator.

template<class s_t>
inline decltype(auto) evaluate_stress(s_t &&E, const size_t &pixel_index)

evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor), and the local pixel id.

template<class s_t>
inline decltype(auto) evaluate_stress(s_t &&E, const Real &lambda, const Real &mu, const

EigenStrainArg_t &eigen_strain)
evaluates second Piola-Kirchhoff stress given the Green-Lagrange strain (or Cauchy stress if called with a
small strain tensor), the first Lame constant (lambda) and the second Lame constant (shear modulus/mu).

template<class s_t>

216 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline decltype(auto) evaluate_stress_tangent(s_t &&E, const size_t &pixel_index)
evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor), and the local pixel id.

template<class s_t>
inline decltype(auto) evaluate_stress_tangent(s_t &&E, const Real &lambda, const Real &mu, const

EigenStrainArg_t &eigen_strain)
evaluates both second Piola-Kirchhoff stress and stiffness given the Green-Lagrange strain (or Cauchy stress
and stiffness if called with a small strain tensor), the first Lame constant (lambda) and the second Lame
constant (shear modulus/mu).

void set_plastic_increment(const size_t &quad_pt_id, const Real &increment)
set the plastic_increment on a single quadrature point

void set_stress_threshold(const size_t &quad_pt_id, const Real &threshold)
set the stress_threshold on a single quadrature point

void set_eigen_strain(const size_t &quad_pt_id, Eigen::Ref<Eigen::Matrix<Real, DimM, DimM>>
&eigen_strain)

set the eigen_strain on a single quadrature point

const Real &get_plastic_increment(const size_t &quad_pt_id)
get the plastic_increment on a single quadrature point

const Real &get_stress_threshold(const size_t &quad_pt_id)
get the stress_threshold on a single quadrature point

const Eigen::Ref<Eigen::Matrix<Real, DimM, DimM>> get_eigen_strain(const size_t &quad_pt_id)
get the eigen_strain on a single quadrature point

void reset_overloaded_quad_pts()
reset_overloaded_quadrature points, reset the internal variable overloaded_quad_pts by clear the std::vector

virtual void add_pixel(const size_t &pixel_id) final
overload add_pixel to write into loacal stiffness tensor

void add_pixel(const size_t &pixel_id, const Real &Youngs_modulus, const Real &Poisson_ratio, const Real
&plastic_increment, const Real &stress_threshold, const Eigen::Ref<const
Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>> &eigen_strain)

overload add_pixel to write into local stiffness tensor

inline decltype(auto) identify_overloaded_quad_pts(Cell &cell, Eigen::Ref<Vector_t>
&stress_numpy_array)

evaluate how many pixels have a higher stress than their stress threshold

inline std::vector<size_t> &identify_overloaded_quad_pts(const muGrid::TypedFieldBase<Real>
&stress_field)

inline decltype(auto) update_eigen_strain_field(Cell &cell, Eigen::Ref<Vector_t>
&stress_numpy_array)

Update the eigen_strain_field of overloaded pixels by a discrete plastic step from the plastic_increment_field
in the direction of the deviatoric stress tensor

inline void update_eigen_strain_field(const muGrid::TypedFieldBase<Real> &stress_field)

217

µSpectre Documentation, Release v0.1

inline void archive_overloaded_quad_pts(std::list<std::vector<size_t>> &avalanche_history)
Archive the overloaded pixels into an avalanche history

archive_overloaded_quad_pts(), archives the overloaded pixels saved in this->overloaded_quad_pts to the
input vector avalanche_history and empties overloaded_quad_pts.

inline decltype(auto) relax_overloaded_quad_pts(Cell &cell, Eigen::Ref<Vector_t>
&stress_numpy_array)

relax all overloaded pixels, return the new stress field and the avalance history

template<class s_t>
auto evaluate_stress(s_t &&E, const Real &lambda, const Real &mu, const EigenStrainArg_t

&eigen_strain) -> decltype(auto)

template<class s_t>
auto evaluate_stress_tangent(s_t &&E, const Real &lambda, const Real &mu, const EigenStrainArg_t

&eigen_strain) -> decltype(auto)

Protected Types

using Field_t = muGrid::MappedScalarField<Real, Mapping::Mut>
storage for first Lame constant ‘lambda’, second Lame constant(shear modulus) ‘mu’, plastic strain ep-
silon_p, and a vector of overloaded (stress>stress_threshold) pixel coordinates

using LTensor_Field_t = muGrid::MappedT2Field<Real, Mapping::Mut, DimM>

Protected Attributes

Field_t lambda_field

Field_t mu_field

Field_t plastic_increment_field

Field_t stress_threshold_field

LTensor_Field_t eigen_strain_field

std::vector<size_t> overloaded_quad_pts = {}

class MaterialsToolboxError : public runtime_error
#include <materials_toolbox.hh> thrown when generic materials-related runtime errors occur (mostly contin-
uum mechanics problems)

218 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

inline explicit MaterialsToolboxError(const std::string &what)
constructor

inline explicit MaterialsToolboxError(const char *what)
constructor

template<Formulation Form>

struct MaterialStressEvaluator

Public Static Functions

template<class Material, class Strain, class Stress, class Op>
static inline decltype(auto) static compute(Material &mat, const Strain &strain, Stress &stress, const size_t

&quad_pt_id, const Op &operation)

template<Formulation Form>

struct MaterialStressEvaluator

Public Static Functions

template<class Material, class Strain, class Stress, class Op>
static inline void compute(Material &mat, Strain &&strain, Stress &stress, const size_t &quad_pt_id, const

Op &operation)

template<>

struct MaterialStressEvaluator<Formulation::finite_strain>

Public Static Functions

template<class Material, class Strain, class Stress, class Op>
static inline decltype(auto) static compute(Material &mat, const Strain &strain, Stress &stress, const size_t

&quad_pt_id, const Op &operation)

template<>

struct MaterialStressEvaluator<Formulation::finite_strain>

Public Static Functions

template<class Material, class Strain, class Stress, class Op>
static inline void compute(Material &mat, Strain &&strain, Stress &stress, const size_t &quad_pt_id, const

Op &operation)

template<Formulation Form>

struct MaterialStressTangentEvaluator

219

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Material, class Strain, class Stress, class Stiffness, class Op>
static inline decltype(auto) static compute(Material &mat, const Strain &strain, std::tuple<Stress, Stiffness>

&stress_stiffness, const size_t &quad_pt_id, const Op &operation)

template<Formulation Form>

struct MaterialStressTangentEvaluator

Public Static Functions

template<class Material, class Strain, class Stress, class Stiffness, class Op>
static inline void compute(Material &mat, Strain &&strain, std::tuple<Stress, Stiffness> &stress_stiffness,

const size_t &quad_pt_id, const Op &operation)

template<>

struct MaterialStressTangentEvaluator<Formulation::finite_strain>

Public Static Functions

template<class Material, class Strain, class Stress, class Stiffness, class Op>
static inline decltype(auto) static compute(Material &mat, const Strain &strain, std::tuple<Stress, Stiffness>

&stress_stiffness, const size_t &quad_pt_id, const Op &operation)

template<>

struct MaterialStressTangentEvaluator<Formulation::finite_strain>

Public Static Functions

template<class Material, class Strain, class Stress, class Stiffness, class Op>
static inline void compute(Material &mat, Strain &&strain, std::tuple<Stress, Stiffness> &stress_stiffness,

const size_t &quad_pt_id, const Op &operation)

struct Negative
#include <field_typed.hh> Simple structure used to allow for lazy evaluation of the unary ‘-’ sign. When assiging
the the negative of a field to another, as in field_a = -field_b, this structure allows to implement this operation
without needing a temporary object holding the negative value of field_b.

Public Members

const TypedFieldBase &field
field on which the unary ‘-’ was applied

template<SplitCell IsSplit>

class Node
Subclassed by muSpectre::RootNode< IsSplit >

220 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using RootNode_t = RootNode<IsSplit>

using Vector_t = Eigen::Matrix<Real, Eigen::Dynamic, 1>

Public Functions

Node() = delete
Default constructor.

Node(const Dim_t &dim, const DynRcoord_t &new_origin, const DynCcoord_t &new_lenghts, const Dim_t
&depth, const Dim_t &max_depth, RootNode_t &root, const bool &is_root)

Node(const Node &other) = delete
Copy constructor.

Node(Node &&other) = default
Move constructor.

virtual ~Node() = default
Destructor.

template<Dim_t DimS>
void check_node_helper()

void check_node()

template<Dim_t DimS>
void split_node_helper(const Real &ratio, const corkpp::IntersectionState &state)

template<Dim_t DimS>
void split_node_helper(const Real &intersection_ratio, const corkpp::vector_t &normal_vector, const

corkpp::IntersectionState &state)

void split_node(const Real &ratio, const corkpp::IntersectionState &state)

void split_node(const Real &intersection_ratio, const corkpp::vector_t &normal_vector, const
corkpp::IntersectionState &state)

template<Dim_t DimS>
void divide_node_helper()

void divide_node()

221

µSpectre Documentation, Release v0.1

Protected Attributes

Dim_t dim

RootNode_t &root_node

DynRcoord_t origin

DynRcoord_t Rlengths = {}

DynCcoord_t Clengths = {}

int depth

bool is_pixel

int children_no

std::vector<Node> children = {}

template<Dim_t Dim, FiniteDiff FinDif>

struct NumericalTangentHelper
#include <materials_toolbox.hh> implementation-structure for computing numerical tangents. For internal use
only.

Template Parameters
• Dim – dimensionality of the material

• FinDif – specificaition of the type of finite differences

Public Types

using T4_t = muGrid::T4Mat<Real, Dim>
short-hand for fourth-rank tensors

using T2_t = Eigen::Matrix<Real, Dim, Dim>
short-hand for second-rank tensors

using T2_vec = Eigen::Map<Eigen::Matrix<Real, Dim * Dim, 1>>
short-hand for second-rank tensor reshaped to a vector

222 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<class FunType, class Derived>
static inline T4_t compute(FunType &&fun, const Eigen::MatrixBase<Derived> &strain, Real delta)

compute and return the approximate tangent moduli at strain strain

template<Dim_t Dim>

struct NumericalTangentHelper<Dim, FiniteDiff ::centred>
#include <materials_toolbox.hh> specialisation for centred differences

Public Types

using T4_t = muGrid::T4Mat<Real, Dim>
short-hand for fourth-rank tensors

using T2_t = Eigen::Matrix<Real, Dim, Dim>
short-hand for second-rank tensors

using T2_vec = Eigen::Map<Eigen::Matrix<Real, Dim * Dim, 1>>
short-hand for second-rank tensor reshaped to a vector

Public Static Functions

template<class FunType, class Derived>
static inline T4_t compute(FunType &&fun, const Eigen::MatrixBase<Derived> &strain, Real delta)

compute and return the approximate tangent moduli at strain strain

class NumpyError : public runtime_error
#include <numpy_tools.hh> base class for numpy related exceptions

Public Functions

inline explicit NumpyError(const std::string &what)
constructor

inline explicit NumpyError(const char *what)
constructor

template<typename T, class Collection_t = GlobalFieldCollection>

class NumpyProxy
#include <numpy_tools.hh> Wrap a pybind11::array into a WrappedField and check the shape of the array

223

µSpectre Documentation, Release v0.1

Public Functions

inline NumpyProxy(DynCcoord_t nb_subdomain_grid_pts, DynCcoord_t subdomain_locations, Dim_t
nb_components, pybind11::array_t<T , pybind11::array::f_style> array)

Construct a NumpyProxy given that we only know the number of components of the field. The constructor
will complain if the grid dimension differs but will wrap any field whose number of components match.
For example, a 3x3 grid with 8 components could look like this:

i. (8, 3, 3)

ii. (2, 4, 3, 3)

iii. (2, 2, 2, 3, 3) The method get_components_shape return the shape of the component part of the
field in this case. For the above examples, it would return:

i. (8,)

ii. (2, 4)

iii. (2, 2, 2) Note that a field with a single component can be passed either with a shaping having leading
dimension of one or without any leading dimension. In the latter case, get_component_shape will
return a vector of size 0. The same applies for fields with a single quadrature point, whose dimension
can be omitted. In general, the shape of the field needs to look like this: (component_1, component:2,
quad_pt, grid_x, grid_y, grid_z) where the number of components and grid indices can be arbitrary.

inline NumpyProxy(DynCcoord_t nb_subdomain_grid_pts, DynCcoord_t subdomain_locations, Dim_t
nb_quad_pts, std::vector<Dim_t> components_shape, pybind11::array_t<T ,
pybind11::array::f_style> array)

Construct a NumpyProxy given that we know the shape of the leading component indices. The constructor
will complain if both the grid dimensions and the component dimensions differ. get_component_shape
returns exactly the shape passed to this constructor.

In general, the shape of the field needs to look like this: (component_1, component:2, quad_pt, grid_x,
grid_y, grid_z) where the number of components and grid indices can be arbitrary. The quad_pt dimension
can be omitted if there is only a single quad_pt.

NumpyProxy(NumpyProxy &&other) = default
move constructor

inline WrappedField<T> &get_field()

inline const std::vector<Dim_t> &get_components_shape() const

inline std::vector<Dim_t> get_components_and_quad_pt_shape() const

Protected Attributes

Collection_t collection

WrappedField<T> field

Dim_t quad_pt_shape

224 Chapter 7. Reference

µSpectre Documentation, Release v0.1

std::vector<Dim_t> components_shape
number of quad pts, omit if zero

struct OperationAddition

Public Functions

inline explicit OperationAddition(const Real &ratio)

template<typename Derived1, typename Derived2>
inline void operator()(const Eigen::MatrixBase<Derived1> &material_stress,

Eigen::MatrixBase<Derived2> &stored_stress) const

Public Members

const Real &ratio

struct OperationAssignment

Public Functions

template<typename Derived1, typename Derived2>
inline void operator()(const Eigen::MatrixBase<Derived1> &material_stress,

Eigen::MatrixBase<Derived2> &stored_stress) const

struct OptimizeResult
#include <solver_common.hh> emulates scipy.optimize.OptimizeResult

Public Members

Eigen::ArrayXXd grad
Strain or Gradient F at solution.

Eigen::ArrayXXd stress
Cauchy stress or first Piola-Kirchhoff stress P at solution.

bool success
whether or not the solver exited successfully

Int status
Termination status of the optimizer. Its value depends on the underlying solver. Refer to message for details.

std::string message
Description of the cause of the termination.

225

µSpectre Documentation, Release v0.1

Uint nb_it
number of iterations

Uint nb_fev
number of cell evaluations

Formulation formulation
continuum mechanic flag

template<Dim_t DimS>

class PFFTEngine : public muFFT ::FFTEngineBase<DimS>
#include <pfft_engine.hh> implements the muFFT::FFTEngineBase interface using the FFTW library

Public Types

using Parent = FFTEngineBase<DimS>
base class

using Ccoord = typename Parent::Ccoord
cell coordinates type

using Workspace_t = typename Parent::Workspace_t
field for Fourier transform of second-order tensor

using Field_t = typename Parent::Field_t
real-valued second-order tensor

Public Functions

PFFTEngine() = delete
Default constructor.

PFFTEngine(Ccoord nb_grid_pts, Dim_t nb_components, Communicator comm = Communicator())
Constructor with the domain’s number of grid points in each direciton, the number of components to trans-
form, and the communicator

PFFTEngine(const PFFTEngine &other) = delete
Copy constructor.

PFFTEngine(PFFTEngine &&other) = default
Move constructor.

virtual ~PFFTEngine() noexcept
Destructor.

PFFTEngine &operator=(const PFFTEngine &other) = delete
Copy assignment operator.

226 Chapter 7. Reference

µSpectre Documentation, Release v0.1

PFFTEngine &operator=(PFFTEngine &&other) = default
Move assignment operator.

virtual void initialise(FFT_PlanFlags plan_flags) override
compute the plan, etc

Workspace_t &fft(Field_t &field) override
forward transform

void ifft(Field_t &field) const override
inverse transform

Protected Attributes

MPI_Comm mpi_comm
MPI communicator.

pfft_plan plan_fft = {}
holds the plan for forward fourier transform

pfft_plan plan_ifft = {}
holds the plan for inverse fourier transform

ptrdiff_t workspace_size = {}
size of workspace buffer returned by planner

Real *real_workspace = {}
temporary real workspace that is correctly padded

Protected Static Attributes

static int nb_engines = {0}
number of times this engine has been instatiated

class PixelIndexIterable
#include <field_collection.hh> Lightweight proxy class providing iteration over the pixel indices of a
muGrid::FieldCollection

Public Types

using iterator = typename std::vector<size_t>::const_iterator
stl

227

µSpectre Documentation, Release v0.1

Public Functions

PixelIndexIterable() = delete
Default constructor.

PixelIndexIterable(const PixelIndexIterable &other) = delete
Copy constructor.

PixelIndexIterable(PixelIndexIterable &&other) = default
Move constructor.

virtual ~PixelIndexIterable() = default
Destructor.

PixelIndexIterable &operator=(const PixelIndexIterable &other) = delete
Copy assignment operator.

PixelIndexIterable &operator=(PixelIndexIterable &&other) = delete
Move assignment operator.

iterator begin() const
stl

iterator end() const
stl

size_t size() const
stl

Protected Functions

explicit PixelIndexIterable(const FieldCollection &collection)
Constructor is protected, because no one ever need to construct this except the fieldcollection

Protected Attributes

friend FieldCollection

allow field collections to call the procted constructor of this iterable

const FieldCollection &collection
reference back to the proxied collection

template<size_t Dim>

class Pixels : public muGrid::CcoordOps::DynamicPixels
#include <ccoord_operations.hh> forward declaration

Centralised iteration over square (or cubic) discretisation grids.

228 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using Parent = DynamicPixels
base class

using Ccoord = Ccoord_t<Dim>
cell coordinates

Public Functions

inline Pixels(const Ccoord &nb_grid_pts = Ccoord{}, const Ccoord &locations = Ccoord{})
constructor

inline Pixels(const Ccoord &nb_grid_pts, const Ccoord &locations, const Ccoord &strides)
constructor with strides

Pixels(const Pixels &other) = default
copy constructor

Pixels &operator=(const Pixels &other) = default
assignment operator

virtual ~Pixels() = default

inline Dim_t get_index(const Ccoord &ccoord) const
return index for a ccoord

inline iterator begin() const
stl conformance

inline iterator end() const
stl conformance

inline size_t size() const
stl conformance

Protected Functions

inline const Ccoord &get_nb_grid_pts() const

inline const Ccoord &get_location() const

inline const Ccoord &get_strides() const

template<Dim_t Dim, StressMeasure StressM, StrainMeasure StrainM>

struct PK1_stress
#include <stress_transformations_default_case.hh> Structure for functions returning PK1 stress from other
stress measures

229

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t&&)

returns the converted stress

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t&&, Tangent_t&&)

returns the converted stress and stiffness

template<Dim_t Dim, StrainMeasure StrainM>

struct PK1_stress<Dim, StressMeasure::Kirchhoff , StrainM> : public
muSpectre::MatTB::internal::PK1_stress<Dim, StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_Kirchhoff_impl.hh> Specialisation for the case where we get Kirchhoff stress
()

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&tau)

returns the converted stress

template<Dim_t Dim>

struct PK1_stress<Dim, StressMeasure::Kirchhoff , StrainMeasure::Gradient> : public
muSpectre::MatTB::internal::PK1_stress<Dim, StressMeasure::Kirchhoff , StrainMeasure::no_strain_>

#include <stress_transformations_Kirchhoff_impl.hh> Specialisation for the case where we get Kirchhoff stress
() derived with respect to Gradient

Public Types

using Parent = PK1_stress<Dim, StressMeasure::Kirchhoff , StrainMeasure::no_strain_>
short-hand

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&tau, Tangent_t &&C)

returns the converted stress and stiffness

template<Dim_t Dim>

struct PK1_stress<Dim, StressMeasure::Kirchhoff , StrainMeasure::GreenLagrange> : public
muSpectre::MatTB::internal::PK1_stress<Dim, StressMeasure::Kirchhoff , StrainMeasure::no_strain_>

#include <stress_transformations_Kirchhoff_impl.hh> Specialisation for the case where we get Kirchhoff stress
() derived with respect to GreenLagrange

230 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using Parent = PK1_stress<Dim, StressMeasure::Kirchhoff , StrainMeasure::no_strain_>
short-hand

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&tau, Tangent_t &&C)

returns the converted stress and stiffness

template<Dim_t Dim, StrainMeasure StrainM>

struct PK1_stress<Dim, StressMeasure::PK1, StrainM> : public muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_PK1_impl.hh> Specialisation for the transparent case, where we already have
Piola-Kirchhoff-1, PK1

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t &&P)

returns the converted stress

template<Dim_t Dim>

struct PK1_stress<Dim, StressMeasure::PK1, StrainMeasure::Gradient> : public
muSpectre::MatTB::internal::PK1_stress<Dim, StressMeasure::PK1, StrainMeasure::no_strain_>

#include <stress_transformations_PK1_impl.hh> Specialisation for the transparent case, where we already have
PK1 stress and stiffness is given with respect to the transformation gradient

Public Types

using Parent = PK1_stress<Dim, StressMeasure::PK1, StrainMeasure::no_strain_>
base class

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t &&P, Tangent_t &&K)

returns the converted stress and stiffness

template<Dim_t Dim, StrainMeasure StrainM>

struct PK1_stress<Dim, StressMeasure::PK2, StrainM> : public muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_PK2_impl.hh> Specialisation for the case where we get material stress (Piola-
Kirchhoff-2, PK2)

231

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&S)

returns the converted stress

template<Dim_t Dim>

struct PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::Gradient> : public
muSpectre::MatTB::internal::PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::no_strain_>

#include <stress_transformations_PK2_impl.hh> Specialisation for the case where we get material stress (Piola-
Kirchhoff-2, PK2) derived with respect to the placement Gradient (F)

Public Types

using Parent = PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::no_strain_>
base class

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&S, Tangent_t &&C)

returns the converted stress and stiffness

template<Dim_t Dim>

struct PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::GreenLagrange> : public
muSpectre::MatTB::internal::PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::no_strain_>

#include <stress_transformations_PK2_impl.hh> Specialisation for the case where we get material stress (Piola-
Kirchhoff-2, PK2) derived with respect to Green-Lagrange strain

Public Types

using Parent = PK1_stress<Dim, StressMeasure::PK2, StrainMeasure::no_strain_>
base class

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&S, Tangent_t &&C)

returns the converted stress and stiffness

template<Dim_t Dim, StressMeasure StressM, StrainMeasure StrainM>

struct PK2_stress
#include <stress_transformations_default_case.hh> Structure for functions returning PK2 stress from other
stress measures

232 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t&&)

returns the converted stress

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t&&, Tangent_t&&)

returns the converted stress and stiffness

template<Dim_t Dim, StrainMeasure StrainM>

struct PK2_stress<Dim, StressMeasure::Kirchhoff , StrainM> : public
muSpectre::MatTB::internal::PK2_stress<Dim, StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_Kirchhoff_impl.hh> Specialisation for the case where we get Kirchhoff stress
() and we need PK2(S)

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&tau)

returns the converted stress

template<Dim_t Dim, StrainMeasure StrainM>

struct PK2_stress<Dim, StressMeasure::PK1, StrainM> : public muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_PK1_impl.hh> Specialisation for the case where we get material stress (Piola-
Kirchhoff-1, PK1)

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&P)

returns the converted stress

template<Dim_t Dim>

struct PK2_stress<Dim, StressMeasure::PK1, StrainMeasure::Gradient> : public
muSpectre::MatTB::internal::PK2_stress<Dim, StressMeasure::PK1, StrainMeasure::no_strain_>

#include <stress_transformations_PK1_impl.hh> Specialisation for the case where we get material stress (Piola-
Kirchhoff-1, PK1) derived with respect to the placement Gradient (F)

Public Types

using Parent = PK2_stress<Dim, StressMeasure::PK1, StrainMeasure::no_strain_>
base class

233

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t &&F, Stress_t &&P, Tangent_t &&K)

returns the converted stress and stiffness

template<Dim_t Dim, StrainMeasure StrainM>

struct PK2_stress<Dim, StressMeasure::PK2, StrainM> : public muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::no_stress_, StrainMeasure::no_strain_>

#include <stress_transformations_PK2_impl.hh> Specialisation for the transparent case, where we already have
PK2 stress

Public Static Functions

template<class Strain_t, class Stress_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t &&S)

returns the converted stress

template<Dim_t Dim>

struct PK2_stress<Dim, StressMeasure::PK2, StrainMeasure::GreenLagrange> : public
muSpectre::MatTB::internal::PK2_stress<Dim, StressMeasure::PK2, StrainMeasure::no_strain_>

#include <stress_transformations_PK2_impl.hh> Specialisation for the transparent case, where we already have
PK2 stress and stiffness is given with respect to the transformation Green-Lagrange

Public Types

using Parent = PK2_stress<Dim, StressMeasure::PK2, StrainMeasure::no_strain_>
base class

Public Static Functions

template<class Strain_t, class Stress_t, class Tangent_t>
static inline decltype(auto) compute(Strain_t&&, Stress_t &&S, Tangent_t &&C)

returns the converted stress and stiffness

template<Dim_t DimS>

class PrecipitateIntersectBase

Public Static Functions

234 Chapter 7. Reference

µSpectre Documentation, Release v0.1

static std::tuple<std::vector<corkpp::point_t>, std::vector<corkpp::point_t>> correct_dimension(const
std::vector<Rcoord_t<DimS>>
&con-
vex_poly_vertices,
const Rco-
ord_t<DimS>
&origin,
const Rco-
ord_t<DimS>
&lengths)

static corkpp::VolNormStateIntersection intersect_precipitate(const std::vector<DynRcoord_t>
&convex_poly_vertices, const
Rcoord_t<DimS> &origin, const
Rcoord_t<DimS> &lengths)

this function is the palce that CORK is called to analyze the geometry and make the intersection of the
precipitate with a grid

template<Dim_t dim, Dim_t i, Dim_t j = dim - 1>

struct Proj
#include <eigen_tools.hh> This is a static implementation of the explicit determination of log(Tensor) following
Jog, C.S. J Elasticity (2008) 93:

a. https://doi.org/10.1007/s10659-008-9169-x

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim> &eigs, const Mat_t<dim> &T)
wrapped function (raison d’être)

template<>

struct Proj<1, 0, 0>
#include <eigen_tools.hh> catch the general tail case

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim>&, const Mat_t<dim>&)

wrapped function (raison d’être)

Public Static Attributes

static constexpr Dim_t dim = {1}
short-hand

static constexpr Dim_t i = {0}
short-hand

235

https://doi.org/10.1007/s10659-008-9169-x

µSpectre Documentation, Release v0.1

static constexpr Dim_t j = {0}
short-hand

template<Dim_t dim>

struct Proj<dim, 0, 1>
#include <eigen_tools.hh> catch the tail case when the last dimension is i

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim> &eigs, const Mat_t<dim> &T)
wrapped function (raison d’être)

Public Static Attributes

static constexpr Dim_t i = {0}
short-hand

static constexpr Dim_t j = {1}
short-hand

template<Dim_t dim, Dim_t i>

struct Proj<dim, i, 0>
#include <eigen_tools.hh> catch the normal tail case

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim> &eigs, const Mat_t<dim> &T)
wrapped function (raison d’être)

Public Static Attributes

static constexpr Dim_t j = {0}
short-hand

template<Dim_t dim, Dim_t other>

struct Proj<dim, other, other>
#include <eigen_tools.hh> catch the case when there’s nothing to do

236 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim> &eigs, const Mat_t<dim> &T)
wrapped function (raison d’être)

template<class Projection>

struct Projection_traits

class ProjectionBase
#include <projection_base.hh> defines the interface which must be implemented by projection operators

Subclassed by muSpectre::ProjectionDefault< DimS >, muSpectre::ProjectionFiniteStrainFast< DimS >

Public Types

using Vector_t = Eigen::Matrix<Real, Eigen::Dynamic, 1>
Eigen type to replace fields.

using GFieldCollection_t = typename muFFT ::FFTEngineBase::GFieldCollection_t
global FieldCollection

using Field_t = muGrid::TypedFieldBase<Real>
Field type on which to apply the projection.

using iterator = typename muFFT ::FFTEngineBase::iterator
iterator over all pixels. This is taken from the FFT engine, because depending on the real-to-complex FFT
employed, only roughly half of the pixels are present in Fourier space (because of the hermitian nature of
the transform)

Public Functions

ProjectionBase() = delete
Default constructor.

ProjectionBase(muFFT ::FFTEngine_ptr engine, DynRcoord_t domain_lengths, Formulation form)

Constructor with cell sizes.

ProjectionBase(const ProjectionBase &other) = delete
Copy constructor.

ProjectionBase(ProjectionBase &&other) = default
Move constructor.

virtual ~ProjectionBase() = default
Destructor.

ProjectionBase &operator=(const ProjectionBase &other) = delete
Copy assignment operator.

237

µSpectre Documentation, Release v0.1

ProjectionBase &operator=(ProjectionBase &&other) = delete
Move assignment operator.

virtual void initialise(muFFT ::FFT_PlanFlags flags = muFFT ::FFT_PlanFlags::estimate)
initialises the fft engine (plan the transform)

virtual void apply_projection(Field_t &field) = 0
apply the projection operator to a field

const DynCcoord_t &get_nb_subdomain_grid_pts() const
returns the process-local number of grid points in each direction of the cell

inline const DynCcoord_t &get_subdomain_locations() const
returns the process-local locations of the cell

const DynCcoord_t &get_nb_domain_grid_pts() const
returns the global number of grid points in each direction of the cell

inline const DynRcoord_t &get_domain_lengths() const
returns the physical sizes of the cell

const DynRcoord_t get_pixel_lengths() const
returns the physical sizes of the pixles of the cell

inline const Formulation &get_formulation() const
return the muSpectre::Formulation that is used in solving this cell. This allows tho check whether a
projection is compatible with the chosen formulation

inline const auto &get_communicator() const
return the communicator object

return the raw projection operator. This is mainly intended for maintenance and debugging and should
never be required in regular use

virtual std::array<Dim_t, 2> get_strain_shape() const = 0
returns the number of rows and cols for the strain matrix type (for full storage, the strain is stored in mate-
rial_dim × material_dim matrices, but in symmetric storage, it is a column vector)

virtual Dim_t get_nb_components() const = 0
get number of components to project per pixel

const Dim_t &get_dim() const
return the number of spatial dimensions

const Dim_t &get_nb_quad() const
returns the number of quadrature points

muFFT ::FFTEngineBase &get_fft_engine()
return a reference to the fft_engine

238 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Attributes

muFFT ::FFTEngine_ptr fft_engine
handle on the fft_engine used

DynRcoord_t domain_lengths
physical sizes of the cell

Formulation form
formulation this projection can be applied to (determines whether the projection enforces gradients, small
strain tensor or symmetric smal strain tensor

GFieldCollection_t &projection_container
A local muSpectre::FieldCollection to store the projection operator per k-space point. This
is a local rather than a global collection, since the pixels considered depend on the FFT imple-
mentation. See http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_
002dDimensional-DFTs-of-Real-Data for an example

template<Dim_t DimS>

class ProjectionDefault : public muSpectre::ProjectionBase
#include <projection_default.hh> base class to inherit from if one implements a projection operator that is stored
in form of a fourth-order tensor of real values per k-grid point

Subclassed by muSpectre::ProjectionFiniteStrain< DimS >, muSpectre::ProjectionSmallStrain< DimS >

Public Types

using Parent = ProjectionBase
base class

using Vector_t = typename Parent::Vector_t
to represent fields

using Gradient_t = muFFT ::Gradient_t
gradient, i.e. derivatives in each Cartesian direction

using Ccoord = Ccoord_t<DimS>
cell coordinates type

using Rcoord = Rcoord_t<DimS>
spatial coordinates type

using GFieldCollection_t = muGrid::GlobalFieldCollection
global field collection

239

http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data
http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data

µSpectre Documentation, Release v0.1

using Field_t = muGrid::TypedFieldBase<Real>
Real space second order tensor fields (to be projected)

using Proj_t = muGrid::ComplexField
fourier-space field containing the projection operator itself

using Proj_map = muGrid::T4FieldMap<Complex, Mapping::Mut, DimS>
iterable form of the operator

using Vector_map = muGrid::MatrixFieldMap<Complex, Mapping::Mut, DimS * DimS, 1>
vectorized version of the Fourier-space second-order tensor field

Public Functions

ProjectionDefault() = delete
Default constructor.

ProjectionDefault(muFFT ::FFTEngine_ptr engine, DynRcoord_t lengths, Gradient_t gradient,
Formulation form)

Constructor with cell sizes and formulation.

ProjectionDefault(const ProjectionDefault &other) = delete
Copy constructor.

ProjectionDefault(ProjectionDefault &&other) = default
Move constructor.

virtual ~ProjectionDefault() = default
Destructor.

ProjectionDefault &operator=(const ProjectionDefault &other) = delete
Copy assignment operator.

ProjectionDefault &operator=(ProjectionDefault &&other) = delete
Move assignment operator.

virtual void apply_projection(Field_t &field) final
apply the projection operator to a field

Eigen::Map<MatrixXXc> get_operator()

virtual std::array<Dim_t, 2> get_strain_shape() const final
returns the number of rows and cols for the strain matrix type (for full storage, the strain is stored in mate-
rial_dim × material_dim matrices, but in symmetriy storage, it is a column vector)

inline virtual Dim_t get_nb_components() const
get number of components to project per pixel

240 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

static inline constexpr Dim_t NbComponents()
get number of components to project per pixel

Protected Attributes

Proj_t &Gfield
field holding the operator

Proj_map Ghat
iterable version of operator

Gradient_t gradient
gradient (nabla) operator, can be computed using Fourier interpolation or through a weighted residual

class ProjectionError : public runtime_error
#include <projection_base.hh> base class for projection related exceptions

Public Functions

inline explicit ProjectionError(const std::string &what)
constructor

inline explicit ProjectionError(const char *what)
constructor

template<Dim_t DimS>

class ProjectionFiniteStrain : public muSpectre::ProjectionDefault<DimS>
#include <projection_finite_strain.hh> Implements the discrete finite strain gradient projection operator

Public Types

using Parent = ProjectionDefault<DimS>
base class

using Ccoord = typename Parent::Ccoord
cell coordinates type

using Rcoord = typename Parent::Rcoord
spatial coordinates type

using Gradient_t = typename Parent::Gradient_t
gradient, i.e. derivatives in each Cartesian direction

241

µSpectre Documentation, Release v0.1

using Proj_map = muGrid::T4FieldMap<Real, Mapping::Mut, DimS>
Field type on which to apply the projection.

using Vector_map = muGrid::MatrixFieldMap<Complex, Mapping::Mut, DimS * DimS, 1>
iterable vectorised version of the Fourier-space tensor field

Public Functions

ProjectionFiniteStrain() = delete
Default constructor.

ProjectionFiniteStrain(muFFT ::FFTEngine_ptr engine, const DynRcoord_t &lengths, Gradient_t
gradient)

Constructor with fft_engine and stencil.

ProjectionFiniteStrain(muFFT ::FFTEngine_ptr engine, const DynRcoord_t &lengths)
Constructor with fft_engine and default (Fourier) gradient.

ProjectionFiniteStrain(const ProjectionFiniteStrain &other) = delete
Copy constructor.

ProjectionFiniteStrain(ProjectionFiniteStrain &&other) = default
Move constructor.

virtual ~ProjectionFiniteStrain() = default
Destructor.

ProjectionFiniteStrain &operator=(const ProjectionFiniteStrain &other) = delete
Copy assignment operator.

ProjectionFiniteStrain &operator=(ProjectionFiniteStrain &&other) = default
Move assignment operator.

virtual void initialise(muFFT ::FFT_PlanFlags flags = muFFT ::FFT_PlanFlags::estimate) final
initialises the fft engine (plan the transform)

template<Dim_t DimS>

class ProjectionFiniteStrainFast : public muSpectre::ProjectionBase
#include <projection_finite_strain_fast.hh> replaces muSpectre::ProjectionFiniteStrain with a faster
and less memory-hungry alternative formulation. Use this if you don’t have a very good reason not to (and tell
me (author) about it, I’d be interested to hear it).

Public Types

using Parent = ProjectionBase
base class

using Gradient_t = muFFT ::Gradient_t
gradient, i.e. derivatives in each Cartesian direction

242 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using Ccoord = Ccoord_t<DimS>
cell coordinates type

using Rcoord = Rcoord_t<DimS>
spatial coordinates type

using Field_t = muGrid::TypedFieldBase<Real>
Real space second order tensor fields (to be projected)

using Proj_t = muGrid::ComplexField
Fourier-space field containing the projection operator itself.

using Proj_map = muGrid::MatrixFieldMap<Complex, Mapping::Mut, DimS, 1, muGrid::Iteration::Pixel>
iterable form of the operator

using Grad_map = muGrid::MatrixFieldMap<Complex, Mapping::Mut, DimS, DimS,
muGrid::Iteration::Pixel>

iterable Fourier-space second-order tensor field

Public Functions

ProjectionFiniteStrainFast() = delete
Default constructor.

ProjectionFiniteStrainFast(muFFT ::FFTEngine_ptr engine, const DynRcoord_t &lengths, Gradient_t
gradient)

Constructor with FFT engine.

ProjectionFiniteStrainFast(muFFT ::FFTEngine_ptr engine, const DynRcoord_t &lengths)
Constructor with FFT engine and default (Fourier) gradient.

ProjectionFiniteStrainFast(const ProjectionFiniteStrainFast &other) = delete
Copy constructor.

ProjectionFiniteStrainFast(ProjectionFiniteStrainFast &&other) = default
Move constructor.

virtual ~ProjectionFiniteStrainFast() = default
Destructor.

ProjectionFiniteStrainFast &operator=(const ProjectionFiniteStrainFast &other) = delete
Copy assignment operator.

ProjectionFiniteStrainFast &operator=(ProjectionFiniteStrainFast &&other) = default
Move assignment operator.

virtual void initialise(muFFT ::FFT_PlanFlags flags = muFFT ::FFT_PlanFlags::estimate) final
initialises the fft engine (plan the transform)

virtual void apply_projection(Field_t &field) final
apply the projection operator to a field

243

µSpectre Documentation, Release v0.1

Eigen::Map<MatrixXXc> get_operator()

virtual std::array<Dim_t, 2> get_strain_shape() const final
returns the number of rows and cols for the strain matrix type (for full storage, the strain is stored in mate-
rial_dim × material_dim matrices, but in symmetriy storage, it is a column vector)

inline virtual Dim_t get_nb_components() const
get number of components to project per pixel

Public Static Functions

static inline constexpr Dim_t NbComponents()
get number of components to project per pixel

Protected Attributes

Proj_t &xi_field
field of normalised wave vectors

Proj_map xis
iterable normalised wave vectors

Gradient_t gradient
gradient (nabla) operator, can be computed using Fourier interpolation or through a weighted residual

template<Dim_t DimS>

class ProjectionSmallStrain : public muSpectre::ProjectionDefault<DimS>
#include <projection_small_strain.hh> Implements the small strain projection operator as defined in Appendix
A1 of DOI: 10.1002/nme.5481 (“A finite element perspective on nonlinear FFT-based micromechanical simula-
tions”, Int. J. Numer. Meth. Engng 2017; 111 :903–926)

Public Types

using Parent = ProjectionDefault<DimS>
base class

using Gradient_t = typename Parent::Gradient_t
gradient, i.e. derivatives in each Cartesian direction

using Ccoord = typename Parent::Ccoord
cell coordinates type

using Rcoord = typename Parent::Rcoord
spatial coordinates type

244 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using Proj_t = muGrid::RealField
Fourier-space field containing the projection operator itself.

using Proj_map = muGrid::T4FieldMap<Real, Mapping::Mut, DimS>
iterable operator

using Vector_map = muGrid::MatrixFieldMap<Complex, Mapping::Mut, DimS * DimS, 1>
iterable vectorised version of the Fourier-space tensor field

Public Functions

ProjectionSmallStrain() = delete
Default constructor.

ProjectionSmallStrain(muFFT ::FFTEngine_ptr engine, const DynRcoord_t &lengths, Gradient_t
gradient)

Constructor with fft_engine.

ProjectionSmallStrain(muFFT ::FFTEngine_ptr engine, const DynRcoord_t &lengths)
Constructor with fft_engine and default (Fourier) gradient.

ProjectionSmallStrain(const ProjectionSmallStrain &other) = delete
Copy constructor.

ProjectionSmallStrain(ProjectionSmallStrain &&other) = default
Move constructor.

virtual ~ProjectionSmallStrain() = default
Destructor.

ProjectionSmallStrain &operator=(const ProjectionSmallStrain &other) = delete
Copy assignment operator.

ProjectionSmallStrain &operator=(ProjectionSmallStrain &&other) = delete
Move assignment operator.

virtual void initialise(muFFT ::FFT_PlanFlags flags = muFFT ::FFT_PlanFlags::estimate) final
initialises the fft engine (plan the transform)

template<typename T, size_t N>

class RefArray
#include <ref_array.hh> work-around to allow making a statically sized array of references (which are forbidden
by the C++ language

245

µSpectre Documentation, Release v0.1

Public Functions

RefArray() = delete
Deleted default constructor.

template<typename ...Vals>
inline explicit RefArray(Vals&... vals)

bulk initialisation constructor

RefArray(const RefArray &other) = default
Copy constructor.

RefArray(RefArray &&other) = default
Move constructor.

virtual ~RefArray() = default
Destructor.

RefArray &operator=(const RefArray &other) = default
Copy assignment operator.

RefArray &operator=(RefArray &&other) = delete
Move assignment operator.

inline T &operator[](size_t index)
random access operator

inline constexpr T &operator[](size_t index) const
random constant access operator

Protected Attributes

std::array<T*, N> values = {}
storage

template<typename T>

class RefVector : protected std::vector<T*>
#include <ref_vector.hh> work-around to allow using vectors of references (which are forbidden by the C++ stl

Public Functions

RefVector() = default
Default constructor.

RefVector(const RefVector &other) = default
Copy constructor.

RefVector(RefVector &&other) = default
Move constructor.

virtual ~RefVector() = default
Destructor.

246 Chapter 7. Reference

µSpectre Documentation, Release v0.1

RefVector &operator=(const RefVector &other) = default
Copy assignment operator.

RefVector &operator=(RefVector &&other) = default
Move assignment operator.

inline void push_back(T &value)
stl

inline T &at(size_t index)
stl

inline const T &at(size_t index) const
stl

inline T &operator[](size_t index)
random access operator

inline const T &operator[](size_t index) const
random const access operator

inline iterator begin()
stl

inline iterator end()
stl

Private Types

using Parent = std::vector<T*>

template<SplitCell IsSplit>

class RootNode : public muSpectre::Node<IsSplit>

Public Types

using Parent = Node<IsSplit>
base class

using Vector_t = typename Parent::Vector_t

Public Functions

RootNode() = delete
Default Constructor.

RootNode(const Cell &cell, const std::vector<DynRcoord_t> &vert_precipitate)
Constructing a root node for a cell and a preticipate inside that cell.

RootNode(const RootNode &other) = delete
Copy constructor.

247

µSpectre Documentation, Release v0.1

RootNode(RootNode &&other) = default
Move constructor.

~RootNode() = default
Destructor.

inline std::vector<DynCcoord_t> get_intersected_pixels()

inline std::vector<size_t> get_intersected_pixels_id()

inline std::vector<Real> get_intersection_ratios()

inline Vectors_t get_intersection_normals()

inline std::vector<corkpp::IntersectionState> get_intersection_status()

Dim_t make_max_resolution(const Cell &cell) const

Dim_t make_max_depth(const Cell &cell) const

void check_root_node()

int compute_squared_circum_square(const Cell &cell) const

DynRcoord_t make_root_origin(const Cell &cell) const

Protected Attributes

const Cell &cell

DynRcoord_t cell_length
the cell to be intersected

DynRcoord_t pixel_lengths
The Real size of the cell.

DynCcoord_t cell_resolution
The Real size of each pixel.

int max_resolution
The nb_grid_pts for the.

int max_depth
The maximum of the nb_grid_pts in all directions.

std::vector<DynRcoord_t> precipitate_vertices = {}
The maximum depth of the branches in the OctTree.

std::vector<DynCcoord_t> intersected_pixels = {}
The coordinates of the vertices of the perticpiate

248 Chapter 7. Reference

µSpectre Documentation, Release v0.1

std::vector<size_t> intersected_pixels_id = {}
The pixels of the cell which intersect with the percipitate

std::vector<Real> intersection_ratios = {}
The index of the intersecting pixels.

Vectors_t intersection_normals
The intesrction ratio of intersecting pixels.

std::vector<corkpp::IntersectionState> intersection_state = {}
The normal vectors of the interface in the intersecting pixels

Friends

friend class Node< IsSplit >

template<Dim_t Rank>

struct RotationHelper

template<>

struct RotationHelper<firstOrder>
#include <geometry.hh> Specialisation for first-rank tensors (vectors)

Public Static Functions

template<class Derived1, class Derived2>
static inline decltype(auto) rotate(const Eigen::MatrixBase<Derived1> &input, const

Eigen::MatrixBase<Derived2> &R)

template<>

struct RotationHelper<fourthOrder>
#include <geometry.hh> Specialisation for fourth-rank tensors

Public Static Functions

template<class Derived1, class Derived2>
static inline decltype(auto) rotate(const Eigen::MatrixBase<Derived1> &input, const

Eigen::MatrixBase<Derived2> &R)

template<>

struct RotationHelper<secondOrder>
#include <geometry.hh> Specialisation for second-rank tensors

249

µSpectre Documentation, Release v0.1

Public Static Functions

template<class Derived1, class Derived2>
static inline decltype(auto) rotate(const Eigen::MatrixBase<Derived1> &input, const

Eigen::MatrixBase<Derived2> &R)
raison d’être

template<RotationOrder Order, Dim_t Dim>

struct RotationMatrixComputerAngle
#include <geometry.hh> internal structure for computing rotation matrices

template<RotationOrder Order>

struct RotationMatrixComputerAngle<Order, threeD>
#include <geometry.hh> specialisation for three-dimensional problems

Public Types

using RotMat_t = typename RotatorAngle<Dim, Order>::RotMat_t

using Angles_t = typename RotatorAngle<Dim, Order>::Angles_t

Public Static Functions

template<typename Derived>
static inline RotMat_t compute(const Eigen::MatrixBase<Derived> &angles)

compute and return the rotation matrixtemplate <typename derived>=””>

Public Static Attributes

static constexpr Dim_t Dim = {threeD}

template<RotationOrder Order>

struct RotationMatrixComputerAngle<Order, twoD>
#include <geometry.hh> specialisation for two-dimensional problems

Public Types

using RotMat_t = typename RotatorAngle<Dim, Order>::RotMat_t

using Angles_t = typename RotatorAngle<Dim, Order>::Angles_t

250 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<typename Derived>
static inline RotMat_t compute(const Eigen::MatrixBase<Derived> &angles)

compute and return the rotation matrix

Public Static Attributes

static constexpr Dim_t Dim = {twoD}

template<Dim_t Dim>

struct RotationMatrixComputerNormal

template<>

struct RotationMatrixComputerNormal<threeD>

Public Types

using RotMat_t = typename RotatorTwoVec<Dim>::RotMat_t

using Vec_t = typename RotatorTwoVec<Dim>::Vec_t

Public Static Functions

template<typename Derived>
static inline RotMat_t compute(const Eigen::MatrixBase<Derived> &vec)

Public Static Attributes

static constexpr Dim_t Dim = {threeD}

template<>

struct RotationMatrixComputerNormal<twoD>

Public Types

using RotMat_t = typename RotatorTwoVec<Dim>::RotMat_t

using Vec_t = typename RotatorTwoVec<Dim>::Vec_t

251

µSpectre Documentation, Release v0.1

Public Static Functions

template<typename Derived>
static inline RotMat_t compute(const Eigen::MatrixBase<Derived> &vec)

Public Static Attributes

static constexpr Dim_t Dim = {twoD}

template<Dim_t Dim>

struct RotationMatrixComputerTwoVec

template<>

struct RotationMatrixComputerTwoVec<threeD>

Public Types

using RotMat_t = typename RotatorTwoVec<Dim>::RotMat_t

using Vec_t = typename RotatorTwoVec<Dim>::Vec_t

Public Static Functions

template<typename DerivedA, typename DerivedB>
static inline RotMat_t compute(const Eigen::MatrixBase<DerivedA> &vec_ref, const

Eigen::MatrixBase<DerivedB> &vec_des)

Public Static Attributes

static constexpr Dim_t Dim = {threeD}

template<>

struct RotationMatrixComputerTwoVec<twoD>

Public Types

using RotMat_t = typename RotatorTwoVec<Dim>::RotMat_t

using Vec_t = typename RotatorTwoVec<Dim>::Vec_t

252 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

template<typename DerivedA, typename DerivedB>
static inline RotMat_t compute(const Eigen::MatrixBase<DerivedA> &vec_ref, const

Eigen::MatrixBase<DerivedB> &vec_des)

Public Static Attributes

static constexpr Dim_t Dim = {twoD}

template<Dim_t Dim, RotationOrder Order = internal::DefaultOrder<Dim>::value>

class RotatorAngle : public muSpectre::RotatorBase<Dim>

Public Types

using Parent = RotatorBase<Dim>

using Angles_t = Eigen::Matrix<Real, (Dim == twoD) ? 1 : 3, 1>

using RotMat_t = Eigen::Matrix<Real, Dim, Dim>

Public Functions

RotatorAngle() = delete
Default constructor.

template<class Derived>
inline explicit RotatorAngle(const Eigen::MatrixBase<Derived> &angles_inp)

constructor given the euler angles:

RotatorAngle(const RotatorAngle &other) = default
Copy constructor.

RotatorAngle(RotatorAngle &&other) = default
Move constructor.

virtual ~RotatorAngle() = default
Destructor.

RotatorAngle &operator=(const RotatorAngle &other) = default
Copy assignment operator.

RotatorAngle &operator=(RotatorAngle &&other) = default
Move assignment operator.

template<typename Derived>
auto compute_rotation_matrix_angle(const Eigen::MatrixBase<Derived> &angles) -> RotMat_t

253

µSpectre Documentation, Release v0.1

Protected Functions

template<class Derived>
inline RotMat_t compute_rotation_matrix_angle(const Eigen::MatrixBase<Derived> &angles)

template<Dim_t Dim>

class RotatorBase
Subclassed by muSpectre::RotatorAngle< Dim, Order >, muSpectre::RotatorNormal< Dim >, muSpec-
tre::RotatorTwoVec< Dim >

Public Types

using RotMat_t = Eigen::Matrix<Real, Dim, Dim>

using RotMat_ptr = std::unique_ptr<RotMat_t>

Public Functions

RotatorBase() = delete
Default constructor.

inline explicit RotatorBase(RotMat_t rotation_matrix_input)
constructor with given rotation matrix

RotatorBase(const RotatorBase &other) = default
Copy constructor.

RotatorBase(RotatorBase &&other) = default
Move constructor.

virtual ~RotatorBase() = default
Destructor.

RotatorBase &operator=(const RotatorBase &other) = default
Copy assignment operator.

RotatorBase &operator=(RotatorBase &&other) = default
Move assignment operator.

template<class Derived>
inline decltype(auto) rotate(const Eigen::MatrixBase<Derived> &input) const

Applies the rotation into the frame define my the rotation

matrix

Parameters
input – is a first-, second-, or fourth-rank tensor (column vector, square matrix, or T4Matrix,
or a Eigen::Map of either of these, or an expression that evaluates into any of these)

template<class Derived>

254 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline decltype(auto) rotate_back(const Eigen::MatrixBase<Derived> &input) const
Applies the rotation back out from the frame define my the rotation matrix

Parameters
input – is a first-, second-, or fourth-rank tensor (column vector, square matrix, or T4Matrix,
or a Eigen::Map of either of these, or an expression that evaluates into any of these)

inline const RotMat_t &get_rot_mat() const

template<class Derived>
inline void set_rot_mat(const Eigen::MatrixBase<Derived> &mat_inp)

Protected Attributes

RotMat_ptr rot_mat_holder

const RotMat_t &rot_mat

template<Dim_t Dim>

class RotatorNormal : public muSpectre::RotatorBase<Dim>
#include <geometry.hh> this class is used to make a vector aligned to x-axis of the coordinate system, the input
for the constructor is the vector itself and the functions rotate and rotate back would be available as they exist in
the parent class (RotatorBase) nad can be used in order to do the functionality of the class

Public Types

using Parent = RotatorBase<Dim>

using Vec_t = Eigen::Matrix<Real, Dim, 1>

using RotMat_t = Eigen::Matrix<Real, Dim, Dim>

Public Functions

RotatorNormal() = delete
Default constructor.

template<typename Derived>
inline explicit RotatorNormal(const Eigen::MatrixBase<Derived> &vec)

constructor

RotatorNormal(const RotatorNormal &other) = default
Copy constructor.

RotatorNormal(RotatorNormal &&other) = default
Move constructor.

virtual ~RotatorNormal() = default
Destructor.

255

µSpectre Documentation, Release v0.1

RotatorNormal &operator=(const RotatorNormal &other) = default
Copy assignment operator.

RotatorNormal &operator=(RotatorNormal &&other) = default
Move assignment operator.

template<typename Derived>
auto compute_rotation_matrix_normal(const Eigen::MatrixBase<Derived> &vec) -> RotMat_t

Protected Functions

template<typename Derived>
inline RotMat_t compute_rotation_matrix_normal(const Eigen::MatrixBase<Derived> &vec)

template<Dim_t Dim>

class RotatorTwoVec : public muSpectre::RotatorBase<Dim>
#include <geometry.hh> this class is used to make the vector a aligned to the vec b by means of a rotation system,
the input for the constructor is the vector itself and the functions rotate and rotate back would be available as they
exist in the parent class (RotatorBase) nad can be used in order to do the functionality of the class

Public Types

using Parent = RotatorBase<Dim>

using Vec_t = Eigen::Matrix<Real, (Dim == twoD) ? 2 : 3, 1>

using Vec_ptr = std::unique_ptr<Vec_t>

using RotMat_t = Eigen::Matrix<Real, Dim, Dim>

Public Functions

RotatorTwoVec() = delete
Default constructor.

template<typename DerivedA, typename DerivedB>
inline RotatorTwoVec(const Eigen::MatrixBase<DerivedA> &vec_a_inp, const

Eigen::MatrixBase<DerivedB> &vec_b_inp)
Constructor given the two vectors.

RotatorTwoVec(const RotatorTwoVec &other) = default
Copy constructor.

RotatorTwoVec(RotatorTwoVec &&other) = default
Move constructor.

virtual ~RotatorTwoVec() = default
Destructor.

256 Chapter 7. Reference

µSpectre Documentation, Release v0.1

RotatorTwoVec &operator=(const RotatorTwoVec &other) = default
Copy assignment operator.

RotatorTwoVec &operator=(RotatorTwoVec &&other) = default
Move assignment operator.

template<typename DerivedA, typename DerivedB>
auto compute_rotation_matrix_TwoVec(const Eigen::MatrixBase<DerivedA> &vec_ref, const

Eigen::MatrixBase<DerivedB> &vec_des) -> RotMat_t

Protected Functions

template<typename DerivedA, typename DerivedB>
inline RotMat_t compute_rotation_matrix_TwoVec(const Eigen::MatrixBase<DerivedA> &vec_ref, const

Eigen::MatrixBase<DerivedB> &vec_des)

template<typename T>

struct ScalarMap
#include <field_map_static.hh> Internal struct for handling the scalar iterates of muGrid::FieldMap

Public Types

using PlainType = T
Scalar maps don’t have an eigen type representing the iterate, just the raw stored type itsef

using value_type = std::conditional_t<MutIter == Mapping::Const, const T , T>
return type for iterates

using ref_type = value_type<MutIter>&
reference type for iterates

using Return_t = value_type<MutIter>&
for direct access through operator[]

using storage_type = std::conditional_t<MutIter == Mapping::Const, const T*, T*>
need to encapsulate

Public Static Functions

static inline constexpr bool IsValidStaticMapType()
check at compile time whether this map is suitable for statically sized iterates

static inline constexpr bool IsScalarMapType()
check at compiler time whether this map is scalar

template<Mapping MutIter>

257

µSpectre Documentation, Release v0.1

static inline constexpr value_type<MutIter> &provide_ref(storage_type<MutIter> storage)
return the return_type version of the iterate from storage_type

template<Mapping MutIter>
static inline constexpr const value_type<MutIter> &provide_const_ref(const storage_type<MutIter>

storage)
return the const return_type version of the iterate from storage_type

template<Mapping MutIter>
static inline constexpr storage_type<MutIter> provide_ptr(storage_type<MutIter> storage)

return a pointer to the iterate from storage_type

template<Mapping MutIter>
static inline constexpr Return_t<MutIter> from_data_ptr(std::conditional_t<MutIter == Mapping::Const,

const T*, T*> data)
return a return_type version of the iterate from its pointer

template<Mapping MutIter>
static inline constexpr storage_type<MutIter> to_storage(ref_type<MutIter> ref)

return a storage_type version of the iterate from its value

static inline constexpr Dim_t stride()
return the nb of components of the iterate (known at compile time)

static inline std::string shape()
return the iterate’s shape as text, mostly for error messages

static inline constexpr Dim_t NbRow()

template<Dim_t order, Dim_t dim>

struct SizesByOrder
#include <eigen_tools.hh> Creates a Eigen::Sizes type for a Tensor defined by an order and dim.

Public Types

using Sizes = typename internal::SizesByOrderHelper<order - 1, dim, dim>::Sizes
Eigen::Sizes

template<Dim_t order, Dim_t dim, Dim_t... dims>

struct SizesByOrderHelper
#include <eigen_tools.hh> Creates a Eigen::Sizes type for a Tensor defined by an order and dim.

Public Types

using Sizes = typename SizesByOrderHelper<order - 1, dim, dim, dims...>::Sizes
type to use

template<Dim_t dim, Dim_t... dims>

struct SizesByOrderHelper<0, dim, dims...>
#include <eigen_tools.hh> Creates a Eigen::Sizes type for a Tensor defined by an order and dim.

258 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using Sizes = Eigen::Sizes<dims...>
type to use

template<class Solver>

struct Solver_traits

template<>

struct Solver_traits<SolverBiCGSTABEigen>
#include <solver_eigen.hh> traits for the Eigen BiCGSTAB solver

Public Types

using Solver = Eigen::BiCGSTAB<typename Cell::Adaptor, Eigen::IdentityPreconditioner>
Eigen Iterative Solver.

template<>

struct Solver_traits<SolverCGEigen>
#include <solver_eigen.hh> traits for the Eigen conjugate gradient solver

Public Types

using Solver = Eigen::ConjugateGradient<typename Cell::Adaptor, Eigen::Lower | Eigen::Upper,
Eigen::IdentityPreconditioner>

Eigen Iterative Solver.

template<>

struct Solver_traits<SolverDGMRESEigen>
#include <solver_eigen.hh> traits for the Eigen DGMRES solver

Public Types

using Solver = Eigen::DGMRES<typename Cell::Adaptor, Eigen::IdentityPreconditioner>
Eigen Iterative Solver.

template<>

struct Solver_traits<SolverGMRESEigen>
#include <solver_eigen.hh> traits for the Eigen GMRES solver

259

µSpectre Documentation, Release v0.1

Public Types

using Solver = Eigen::GMRES<typename Cell::Adaptor, Eigen::IdentityPreconditioner>
Eigen Iterative Solver.

template<>

struct Solver_traits<SolverMINRESEigen>
#include <solver_eigen.hh> traits for the Eigen MINRES solver

Public Types

using Solver = Eigen::MINRES<typename Cell::Adaptor, Eigen::Lower | Eigen::Upper,
Eigen::IdentityPreconditioner>

Eigen Iterative Solver.

class SolverBase
#include <solver_base.hh> Virtual base class for solvers. An implementation of this interface can be used with
the solution strategies in solvers.hh

Subclassed by muSpectre::SolverCG, muSpectre::SolverEigen< SolverType >, muSpectre::SolverEigen< Solver-
BiCGSTABEigen >, muSpectre::SolverEigen< SolverCGEigen >, muSpectre::SolverEigen< SolverDGMRE-
SEigen >, muSpectre::SolverEigen< SolverGMRESEigen >, muSpectre::SolverEigen< SolverMINRESEigen >

Public Types

using Vector_t = Eigen::Matrix<Real, Eigen::Dynamic, 1>
underlying vector type

using Vector_ref = Eigen::Ref<Vector_t>
Input vector for solvers.

using ConstVector_ref = Eigen::Ref<const Vector_t>
Input vector for solvers.

using Vector_map = Eigen::Map<Vector_t>
Output vector for solvers.

Public Functions

SolverBase() = delete
Default constructor.

SolverBase(Cell &cell, Real tol, Uint maxiter, bool verbose = false)
Constructor takes a Cell, tolerance, max number of iterations and verbosity flag as input

SolverBase(const SolverBase &other) = delete
Copy constructor.

260 Chapter 7. Reference

µSpectre Documentation, Release v0.1

SolverBase(SolverBase &&other) = default
Move constructor.

virtual ~SolverBase() = default
Destructor.

SolverBase &operator=(const SolverBase &other) = delete
Copy assignment operator.

SolverBase &operator=(SolverBase &&other) = delete
Move assignment operator.

virtual void initialise() = 0
Allocate fields used during the solution.

bool has_converged() const
returns whether the solver has converged

void reset_counter()
reset the iteration counter to zero

Uint get_counter() const
get the count of how many solve steps have been executed since construction of most recent counter reset

Uint get_maxiter() const
returns the max number of iterations

Real get_tol() const
returns the solving tolerance

virtual std::string get_name() const = 0
returns the solver’s name (i.e. ‘CG’, ‘GMRES’, etc)

virtual Vector_map solve(const ConstVector_ref rhs) = 0
run the solve operation

Protected Attributes

Cell &cell
reference to the problem’s cell

Real tol
convergence tolerance

Uint maxiter
maximum allowed number of iterations

bool verbose
whether to write information to the stdout

Uint counter = {0}
iteration counter

261

µSpectre Documentation, Release v0.1

bool converged = {false}
whether the solver has converged

class SolverBiCGSTABEigen : public muSpectre::SolverEigen<SolverBiCGSTABEigen>
#include <solver_eigen.hh> Binding to Eigen’s BiCGSTAB solver

Public Functions

inline virtual std::string get_name() const final
Solver’s name.

class SolverCG : public muSpectre::SolverBase
#include <solver_cg.hh> implements the muSpectre::SolverBase interface using a conjugate gradient solver.
This particular class is useful for trouble shooting, as it can be made very verbose, but for production runs, it is
probably better to use muSpectre::SolverCGEigen.

Public Types

using Parent = SolverBase
standard short-hand for base class

using Vector_t = Parent::Vector_t
for storage of fields

using Vector_ref = Parent::Vector_ref
Input vector for solvers.

using ConstVector_ref = Parent::ConstVector_ref
Input vector for solvers.

using Vector_map = Parent::Vector_map
Output vector for solvers.

Public Functions

SolverCG() = delete
Default constructor.

SolverCG(const SolverCG &other) = delete
Copy constructor.

SolverCG(Cell &cell, Real tol, Uint maxiter, bool verbose = false)
Constructor takes a Cell, tolerance, max number of iterations and verbosity flag as input

SolverCG(SolverCG &&other) = default
Move constructor.

262 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual ~SolverCG() = default
Destructor.

SolverCG &operator=(const SolverCG &other) = delete
Copy assignment operator.

SolverCG &operator=(SolverCG &&other) = delete
Move assignment operator.

inline virtual void initialise() final
initialisation does not need to do anything in this case

inline virtual std::string get_name() const final
returns the solver’s name

virtual Vector_map solve(const ConstVector_ref rhs) final
the actual solver

Protected Attributes

Vector_t r_k
residual

Vector_t p_k
search direction

Vector_t Ap_k
directional stiffness

Vector_t x_k
current solution

class SolverCGEigen : public muSpectre::SolverEigen<SolverCGEigen>
#include <solver_eigen.hh> Binding to Eigen’s conjugate gradient solver

Public Functions

inline virtual std::string get_name() const final
returns the solver’s name (i.e. ‘CG’, ‘GMRES’, etc)

class SolverDGMRESEigen : public muSpectre::SolverEigen<SolverDGMRESEigen>
#include <solver_eigen.hh> Binding to Eigen’s DGMRES solver

263

µSpectre Documentation, Release v0.1

Public Functions

inline virtual std::string get_name() const final
Solver’s name.

template<class SolverType>

class SolverEigen : public muSpectre::SolverBase
#include <solver_eigen.hh> base class for iterative solvers from Eigen

Public Types

using Parent = SolverBase
base class

using Solver = typename internal::Solver_traits<SolverType>::Solver
traits obtained from CRTP

using ConstVector_ref = Parent::ConstVector_ref
Input vectors for solver.

using Vector_map = Parent::Vector_map
Output vector for solver.

using Vector_t = Parent::Vector_t
storage for output vector

Public Functions

SolverEigen() = delete
Default constructor.

SolverEigen(Cell &cell, Real tol, Uint maxiter = 0, bool verbose = false)
Constructor with cell and solver parameters.

SolverEigen(const SolverEigen &other) = delete
Copy constructor.

SolverEigen(SolverEigen &&other) = default
Move constructor.

virtual ~SolverEigen() = default
Destructor.

SolverEigen &operator=(const SolverEigen &other) = delete
Copy assignment operator.

SolverEigen &operator=(SolverEigen &&other) = default
Move assignment operator.

264 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual void initialise() final
Allocate fields used during the solution.

virtual Vector_map solve(const ConstVector_ref rhs) final
executes the solver

Protected Attributes

Cell::Adaptor adaptor
cell handle

Solver solver
Eigen’s Iterative solver.

Vector_t result
storage for result

class SolverError : public runtime_error
Subclassed by muSpectre::ConvergenceError

class SolverGMRESEigen : public muSpectre::SolverEigen<SolverGMRESEigen>
#include <solver_eigen.hh> Binding to Eigen’s GMRES solver

Public Functions

inline virtual std::string get_name() const final
returns the solver’s name (i.e. ‘CG’, ‘GMRES’, etc)

class SolverMINRESEigen : public muSpectre::SolverEigen<SolverMINRESEigen>
#include <solver_eigen.hh> Binding to Eigen’s MINRES solver

Public Functions

inline virtual std::string get_name() const final
Solver’s name.

class StateField
#include <state_field.hh> Base class for state fields, useful for storing polymorphic references

Subclassed by muGrid::TypedStateField< T >, muGrid::TypedStateField< Scalar >

265

µSpectre Documentation, Release v0.1

Public Functions

StateField() = delete
Default constructor.

StateField(const StateField &other) = delete
Copy constructor.

StateField(StateField &&other) = delete
Move constructor.

virtual ~StateField() = default
Destructor.

StateField &operator=(const StateField &other) = delete
Copy assignment operator.

StateField &operator=(StateField &&other) = delete
Move assignment operator.

const Dim_t &get_nb_memory() const
returns number of old states that are stored

virtual const std::type_info &get_stored_typeid() const = 0
return type_id of stored type

void cycle()
cycle the fields (current becomes old, old becomes older, oldest becomes current)

Field ¤t()
return a reference to the field holding the current values

const Field ¤t() const
return a const reference to the field holding the current values

const Field &old(size_t nb_steps_ago = 1) const
return a reference to the field holding the values which were current nb_steps_ago ago

inline const std::vector<size_t> &get_indices() const
get the current ordering of the fields (inlineable because called in hot loop)

Protected Functions

StateField(const std::string &unique_prefix, FieldCollection &collection, Dim_t nb_memory = 1)
Protected constructor

Protected Attributes

std::string prefix
the unique prefix is used as the first part of the unique name of the subfields belonging to this state field

FieldCollection &collection
reference to the collection this statefield belongs to

266 Chapter 7. Reference

µSpectre Documentation, Release v0.1

const Dim_t nb_memory
number of old states to store, defaults to 1

std::vector<size_t> indices = {}
the current (historically accurate) ordering of the fields

RefVector<Field> fields = {}
storage of references to the diverse fields

template<typename T, Mapping Mutability>

class StateFieldMap
#include <state_field.hh> forward-declaration for friending

Dynamically sized map for iterating over muGrid::StateFields

Subclassed by muGrid::StaticStateFieldMap< T, Mutability, MapType, NbMemory, IterationType >

Public Types

using FieldMap_t = FieldMap<T , Mutability>
type for the current-values map (may be mutable, if the underlying field was)

using CFieldMap_t = FieldMap<T , Mapping::Const>
type for the old-values map, non-mutable

using iterator = Iterator<(Mutability == Mapping::Mut) ? Mapping::Mut : Mapping::Const>
stl

using const_iterator = Iterator<Mapping::Const>
stl

Public Functions

StateFieldMap() = delete
Default constructor.

StateFieldMap(TypedStateField<T> &state_field, Iteration iter_type = Iteration::QuadPt)
constructor from a state field. The default case is a map iterating over quadrature points with a matrix of
shape (nb_components × 1) per field entry

StateFieldMap(TypedStateField<T> &state_field, Dim_t nb_rows, Iteration iter_type = Iteration::QuadPt)
Constructor from a state field with explicitly chosen shape of iterate. (the number of columns is inferred).

StateFieldMap(const StateFieldMap &other) = delete

StateFieldMap(StateFieldMap &&other) = delete
Move constructor.

267

µSpectre Documentation, Release v0.1

virtual ~StateFieldMap() = default
Destructor.

StateFieldMap &operator=(const StateFieldMap &other) = delete
Copy assignment operator.

StateFieldMap &operator=(StateFieldMap &&other) = delete
Move assignment operator.

iterator begin()
stl

iterator end()
stl

const TypedStateField<T> &get_state_field() const
return a const reference to the mapped state field

const Dim_t &get_nb_rows() const
return the number of rows the iterates have

size_t size() const
returns the number of iterates produced by this map (corresponds to the number of field entries if Itera-
tion::Quadpt, or the number of pixels/voxels if Iteration::Pixel);

inline StateWrapper<Mutability> operator[](size_t index)
random access operator

inline StateWrapper<Mapping::Const> operator[](size_t index) const
random constaccess operator

FieldMap_t &get_current()
returns a reference to the map over the current data

const FieldMap_t &get_current() const
returns a const reference to the map over the current data

const CFieldMap_t &get_old(size_t nb_steps_ago) const
returns a const reference to the map over the data which was current nb_steps_ago ago

Protected Functions

RefVector<Field> &get_fields()
protected access to the constituent fields

std::vector<FieldMap_t> make_maps(RefVector<Field> &fields)
helper function creating the list of maps to store for current values

std::vector<CFieldMap_t> make_cmaps(RefVector<Field> &fields)
helper function creating the list of maps to store for old values

268 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Attributes

TypedStateField<T> &state_field
mapped state field. Needed for query at initialisations

const Iteration iteration
type of map iteration

const Dim_t nb_rows
number of rows of the iterate

std::vector<FieldMap_t> maps
maps over nb_memory + 1 possibly mutable maps. current points to one of these

std::vector<CFieldMap_t> cmaps
maps over nb_memory + 1 const maps. old(nb_steps_ago) points to one of these

template<Mapping MutWrapper>

class StateWrapper
#include <state_field_map.hh> The iterate needs to give access to current or previous values. This is handled
by the muGrid::StateFieldMap::StateWrapper, a light-weight wrapper around the iterate’s data.

Public Types

using StateFieldMap_t = std::conditional_t<MutWrapper == Mapping::Const, const StateFieldMap,
StateFieldMap>

convenience alias

using CurrentVal_t = typename FieldMap_t::template Return_t<MutWrapper>
return value when getting current value from iterate

using OldVal_t = typename FieldMap_t::template Return_t<Mapping::Const>
return value when getting old value from iterate

Public Functions

inline StateWrapper(StateFieldMap_t &state_field_map, size_t index)
constructor (should never have to be called by user)

~StateWrapper() = default

inline CurrentVal_t ¤t()
return the current value at this iterate

inline const OldVal_t &old(size_t nb_steps_ago) const
return the value at this iterate which was current nb_steps_ago ago

269

µSpectre Documentation, Release v0.1

Protected Attributes

CurrentVal_t current_val
current value at this iterate

std::vector<OldVal_t> old_vals = {}
all old values at this iterate

template<typename T, Mapping Mutability, class MapType, Iteration IterationType = Iteration::QuadPt>

class StaticFieldMap : public muGrid::FieldMap<T , Mutability>
#include <field_map_static.hh> Statically sized field map. Static field maps reproduce the capabilities of the
(dynamically sized) muGrid::FieldMap, but iterate much more efficiently.

Public Types

using Scalar = T
stored scalar type

using Parent = FieldMap<T , Mutability>
base class

using Field_t = typename Parent::Field_t
convenience alias

using Return_t = typename MapType::template Return_t<MutType>
return type when dereferencing iterators over this map

using reference = Return_t<Mutability>
stl

using PlainType = typename MapType::PlainType
Eigen type representing iterates of this map.

using Enumeration_t = akantu::containers::ZipContainer<std::conditional_t<(IterationType ==
Iteration::QuadPt), FieldCollection::IndexIterable, FieldCollection::PixelIndexIterable>, StaticFieldMap&>

iterable proxy type to iterate over the quad point/pixel indices and stored values simultaneously

using iterator = Iterator<(Mutability == Mapping::Mut) ? Mapping::Mut : Mapping::Const>
stl

using const_iterator = Iterator<Mapping::Const>
stl

270 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Functions

StaticFieldMap() = delete
Default constructor.

inline explicit StaticFieldMap(Field &field)
Constructor from a non-typed field ref (has more runtime cost than the next constructor

inline explicit StaticFieldMap(Field_t &field)
Constructor from typed field ref.

StaticFieldMap(const StaticFieldMap &other) = delete
Copy constructor.

StaticFieldMap(StaticFieldMap &&other) = default
Move constructor.

virtual ~StaticFieldMap() = default
Destructor.

StaticFieldMap &operator=(const StaticFieldMap &other) = delete
Copy assignment operator.

StaticFieldMap &operator=(StaticFieldMap &&other) = delete
Move assignment operator.

template<bool IsMutableField = Mutability == Mapping::Mut>
inline std::enable_if_t<IsMutableField, StaticFieldMap> &operator=(const typename Parent::EigenRef

&val)
Assign a matrix-like value with dynamic size to every entry.

template<bool IsMutableField = Mutability == Mapping::Mut>
inline std::enable_if_t<IsMutableField && !MapType::IsScalarMapType(), StaticFieldMap<T , Mutability, MapType, IterationType>> &operator=(const

ref-
er-
ence
&val)

Assign a matrix-like value with static size to every entry.

template<bool IsMutableField = Mutability == Mapping::Mut>
inline std::enable_if_t<IsMutableField && MapType::IsScalarMapType(), StaticFieldMap<T , Mutability, MapType, IterationType>> &operator=(const

Scalar
&val)

Assign a scalar value to every entry.

inline Return_t<Mutability> operator[](size_t index)
random access operator

inline Return_t<Mapping::Const> operator[](size_t index) const
random const access operator

inline PlainType mean() const
evaluate the average of the field

inline iterator begin()
stl

271

µSpectre Documentation, Release v0.1

inline iterator end()
stl

inline const_iterator begin() const
stl

inline const_iterator end() const
stl

template<bool IsPixelIterable = (IterationType == Iteration::Pixel)>
inline std::enable_if_t<IsPixelIterable, Enumeration_t> enumerate_indices()

iterate over pixel/quad point indices and stored values simultaneously

template<Iteration Iter = Iteration::QuadPt, class Dummy = std::enable_if_t<IterationType == Iter, bool>>
inline Enumeration_t enumerate_indices()

iterate over pixel/quad point indices and stored values simultaneously

Public Static Functions

static inline constexpr Iteration GetIterationType()
determine at compile time whether pixels or quadrature points are iterater over

static inline constexpr size_t Stride()
determine the number of components in the iterate at compile time

static inline constexpr bool IsStatic()
determine whether this map has statically sized iterates at compile time

template<typename T, Mapping Mutability, class MapType, size_t NbMemory, Iteration IterationType =
Iteration::QuadPt>
class StaticStateFieldMap : public muGrid::StateFieldMap<T , Mutability>

#include <state_field_map_static.hh> statically sized version of muGrid::TypedStateField . Duplicates its
capabilities, with much more efficient statically sized iterates.

Public Types

using Scalar = T
stored scalar type

using Parent = StateFieldMap<T , Mutability>
base class

using StaticFieldMap_t = StaticFieldMap<T , Mutability, MapType, IterationType>
convenience alias for current map

using CStaticFieldMap_t = StaticFieldMap<T , Mapping::Const, MapType, IterationType>
convenience alias for old map

using MapArray_t = std::array<StaticFieldMap_t, NbMemory + 1>
storage type for current maps

272 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using CMapArray_t = std::array<CStaticFieldMap_t, NbMemory + 1>
storage type for old maps

using iterator = Iterator<(Mutability == Mapping::Mut) ? Mapping::Mut : Mapping::Const>
stl

using const_iterator = Iterator<Mapping::Const>
stl

Public Functions

StaticStateFieldMap() = delete
Deleted default constructor.

inline explicit StaticStateFieldMap(TypedStateField<T> &state_field)
constructor from a state field. The default case is a map iterating over quadrature points with a matrix of
shape (nb_components × 1) per field entry

StaticStateFieldMap(const StaticStateFieldMap &other) = delete
Deleted copy constructor.

StaticStateFieldMap(StaticStateFieldMap &&other) = default
Move constructor.

virtual ~StaticStateFieldMap() = default
Destructor.

StaticStateFieldMap &operator=(const StaticStateFieldMap &other) = delete
Copy assignment operator.

StaticStateFieldMap &operator=(StaticStateFieldMap &&other) = default
Move assignment operator.

inline iterator begin()
stl

inline iterator end()
stl

inline const CStaticFieldMap_t &get_old_static(size_t nb_steps_ago) const
return a const ref to an old value map

inline StaticFieldMap_t &get_current_static()
return a ref to an the current map

inline StaticFieldMap_t &get_current()

inline StaticFieldMap_t &get_current_static() const
return a const ref to an the current map

inline StaticFieldMap_t &get_current() const

inline StaticStateWrapper<Mutability> operator[](size_t index)
random access operator

273

µSpectre Documentation, Release v0.1

inline StaticStateWrapper<Mapping::Const> operator[](size_t index) const
random const access operator

Public Static Functions

static inline constexpr size_t GetNbMemory()
determine at compile time the number of old values stored

static inline constexpr Mapping FieldMutability()
determine the map’s mutability at compile time

static inline constexpr Iteration GetIterationType()
determine the map’s iteration type (pixels vs quad pts) at compile time

Protected Types

using HelperRet_t = std::conditional_t<MutIter == Mapping::Const, CMapArray_t, MapArray_t>
internal convenience alias

Protected Functions

template<Mapping MutIter, size_t... I>
inline auto map_helper(std::index_sequence<I ...>) -> HelperRet_t<MutIter>

helper for building the maps

inline MapArray_t make_maps()
build the current value maps

inline CMapArray_t make_cmaps()
build the old value maps

Protected Attributes

MapArray_t static_maps
container for current maps

CMapArray_t static_cmaps
container for old maps

template<Mapping MutWrapper>

class StaticStateWrapper
#include <state_field_map_static.hh> The iterate needs to give access to current or previous values. This is
handled by the muGrid::StaticStateFieldMap::StateWrapper, a light-weight wrapper around the iterate’s
data.

Template Parameters
MutWrapper – mutability of the mapped field. It should never be necessary to set this manually,
rather the iterators dereference operator*() should return the correct type.

274 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Types

using StaticStateFieldMap_t = std::conditional_t<MutWrapper == Mapping::Const, const
StaticStateFieldMap, StaticStateFieldMap>

const-correct map

using CurrentVal_t = typename MapType::template ref_type<MutWrapper>
return type handle for current value

using CurrentStorage_t = typename MapType::template storage_type<MutWrapper>
storage type for current value handle

using OldVal_t = typename MapType::template ref_type<Mapping::Const>
return type handle for old value

using OldStorage_t = typename MapType::template storage_type<Mapping::Const>
storage type for old value handle

Public Functions

inline StaticStateWrapper(StaticStateFieldMap_t &state_field_map, size_t index)
constructor with map and index, not for user to call

~StaticStateWrapper() = default

inline CurrentVal_t ¤t()
return the current value of the iterate

inline const OldVal_t &old(size_t nb_steps_ago) const
return the value of the iterate which was current nb_steps_ago steps ago. Possibly has excess runtime
cost compared to the next function, and has no bounds checking, unlike the next function

template<size_t NbStepsAgo = 1>
inline const OldVal_t &old() const

return the value of the iterate which was current NbStepsAgo steps ago

Protected Functions

inline std::array<OldStorage_t, NbMemory> make_old_vals_static(StaticStateFieldMap_t
&state_field_map, size_t index)

helper function to build the list of old values

template<size_t... NbStepsAgo>
inline std::array<OldStorage_t, NbMemory> old_vals_helper_static(StaticStateFieldMap_t

&state_field_map, size_t index,
std::index_sequence<NbStepsAgo...>)

helper function to build the list of old values

275

µSpectre Documentation, Release v0.1

Protected Attributes

CurrentStorage_t current_val
handle to current value

std::array<OldStorage_t, NbMemory> old_vals = {}
storage for handles to old values

template<Dim_t DimM, StrainMeasure StrainM, StressMeasure StressM>

class STMaterialLinearElasticGeneric1 : public
muSpectre::MaterialMuSpectre<STMaterialLinearElasticGeneric1<DimM, StrainM, StressM>, DimM>

#include <s_t_material_linear_elastic_generic1.hh> forward declaration

Linear elastic law defined by a full stiffness tensor with the ability to compile and work for different strain/stress
measures

Public Types

using Parent = MaterialMuSpectre<STMaterialLinearElasticGeneric1<DimM, StrainM, StressM>, DimM>
base class:

using CInput_t = Eigen::Ref<Eigen::MatrixXd>

using Strain_t = Eigen::Matrix<Real, DimM, DimM>

using Stress_t = Eigen::Matrix<Real, DimM, DimM>

using Stiffness_t = muGrid::T4Mat<Real, DimM>

using traits = MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM, StrainM, StressM>>
traits of this material

using Material_sptr = std::shared_ptr<STMaterialLinearElasticGeneric1>

Public Functions

STMaterialLinearElasticGeneric1() = delete
Default constructor.

STMaterialLinearElasticGeneric1(const std::string &name, const Dim_t &spatial_dimension, const
Dim_t &nb_quad_pts, const CInput_t &C_voigt)

Constructor by name and stiffness tensor.

Parameters
• name – unique material name

• spatial_dimension – spatial dimension of the problem. This corresponds to the dimen-
sionality of the Cell

276 Chapter 7. Reference

µSpectre Documentation, Release v0.1

• nb_quad_pts – number of quadrature points per pixel

• C_voigt – elastic tensor in Voigt notation

STMaterialLinearElasticGeneric1(const STMaterialLinearElasticGeneric1 &other) = delete
Copy constructor.

STMaterialLinearElasticGeneric1(STMaterialLinearElasticGeneric1 &&other) = default
Move constructor.

virtual ~STMaterialLinearElasticGeneric1() = default
Destructor.

STMaterialLinearElasticGeneric1 &operator=(const STMaterialLinearElasticGeneric1 &other) = delete
Copy assignment operator.

STMaterialLinearElasticGeneric1 &operator=(STMaterialLinearElasticGeneric1 &&other) = delete
Move assignment operator.

template<class Derived>
inline Stress_t evaluate_stress(const Eigen::MatrixBase<Derived> &E, const size_t &quad_pt_index = 0)

evaluates stress given the strain

template<class Derived>
inline std::tuple<Stress_t, Stiffness_t> evaluate_stress_tangent(const Eigen::MatrixBase<Derived>

&strain, const size_t &quad_pt_index =
0)

evaluates both stress and stiffness given the strain

inline void set_F(const Strain_t &Finp)

inline Stiffness_t get_C()

template<class Derived>
auto evaluate_stress(const Eigen::MatrixBase<Derived> &strain, const size_t&) -> Stress_t

template<class Derived>
auto evaluate_stress_tangent(const Eigen::MatrixBase<Derived> &strain, const size_t&) ->

std::tuple<Stress_t, Stiffness_t>

Public Static Functions

static std::tuple<Material_sptr, MaterialEvaluator<DimM>> make_evaluator(const CInput_t &C_voigt)
Factory.

Protected Attributes

std::unique_ptr<Stiffness_t> C_holder

const Stiffness_t &C
stiffness tensor

std::unique_ptr<Strain_t> F_holder

277

µSpectre Documentation, Release v0.1

Strain_t &F

bool F_is_set

template<class Dummy>

struct StrainsTComputer

template<class StrainMap_t>

struct StrainsTComputer<std::tuple<StrainMap_t>>

Public Types

using type = std::tuple<typename StrainMap_t::reference>

template<class StrainMap_t>

struct StrainsTComputer<std::tuple<StrainMap_t, StrainMap_t>>

Public Types

using type = std::tuple<typename StrainMap_t::reference, typename StrainMap_t::reference>

template<class Dummy>

struct StressesTComputer

template<class StressMap_t>

struct StressesTComputer<std::tuple<StressMap_t>>

Public Types

using type = std::tuple<typename StressMap_t::reference>

template<class StressMap_t, class TangentMap_t>

struct StressesTComputer<std::tuple<StressMap_t, TangentMap_t>>

Public Types

using type = std::tuple<typename StressMap_t::reference, typename TangentMap_t::reference>

template<Dim_t dim, Dim_t i = dim - 1>

struct Summand
#include <eigen_tools.hh> sum term

278 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim> &eigs, const Mat_t<dim> &T)
wrapped function (raison d’être)

template<Dim_t dim>

struct Summand<dim, 0>
#include <eigen_tools.hh> sum term

Public Static Functions

static inline decltype(auto) compute(const Vec_t<dim> &eigs, const Mat_t<dim> &T)
wrapped function (raison d’être)

Public Static Attributes

static constexpr Dim_t i = {0}
short-hand

template<class Derived>

struct tensor_4_dim
#include <eigen_tools.hh> computes the dimension from a fourth order tensor represented by a square matrix

Public Types

using T = std::remove_reference_t<Derived>
raw type for testing

Public Static Attributes

static constexpr Dim_t value = {ct_sqrt(T ::RowsAtCompileTime)}
evaluated dimension

template<class Derived>

struct tensor_dim
#include <eigen_tools.hh> computes the dimension from a second order tensor represented square matrix or
array

279

µSpectre Documentation, Release v0.1

Public Types

using T = std::remove_reference_t<Derived>
raw type for testing

Public Static Attributes

static constexpr Dim_t value = {T ::RowsAtCompileTime}
evaluated dimension

template<class Derived, Dim_t Dim>

struct tensor_rank
#include <eigen_tools.hh> computes the rank of a tensor given the spatial dimension

Public Types

using T = std::remove_reference_t<Derived>

Public Static Attributes

static constexpr Dim_t value{internal::get_rank<Dim, T ::RowsAtCompileTime, T ::ColsAtCompileTime>()}

template<class Cell>

struct traits<muSpectre::CellAdaptor<Cell>> : public Eigen::internal::traits<Eigen::SparseMatrix<Real>>, public
Eigen::internal::traits<Eigen::SparseMatrix<Real>>

template<class OutType>

struct TupleBuilder

Public Static Functions

template<class ...InTypes, size_t... I>
static inline OutType helper(std::tuple<InTypes...> const &arg, std::index_sequence<I ...>)

template<class ...InTypes>
static inline OutType build(std::tuple<InTypes...> const &arg)

template<typename T, typename FirstVal, typename ...RestVals>

struct TypeChecker
#include <ref_array.hh> Struct user for checking that every member of a parameter pack has type T

280 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Static Attributes

static constexpr bool value {std::is_same<T,
std::remove_reference_t<FirstVal>>::value andTypeChecker<T, RestVals...>::value}

whether the check passed

template<typename T, typename OnlyVal>

struct TypeChecker<T , OnlyVal>
#include <ref_array.hh> Specialisation for recursion tail

Public Static Attributes

static constexpr bool value{std::is_same<T , std::remove_reference_t<OnlyVal>>::value}
whether the check passed

template<typename T>

class TypedField : public muGrid::TypedFieldBase<T>
#include <field_collection.hh> forward declaration of the muSpectre::TypedField

forward declaration of the muGrid::TypedField

A muGrid::TypedField holds a certain number of components (scalars of type T per quadrature point of a
muGrid::FieldCollection’s domain.

Template Parameters
T – type of scalar to hold. Must be one of muGrid::Real, muGrid::Int, muGrid::Uint,
muGrid::Complex.

Public Types

using Parent = TypedFieldBase<T>
base class

using EigenRep_t = typename Parent::EigenRep_t
Eigen type to represent the field’s data.

using Negative = typename Parent::Negative
convenience alias

Public Functions

TypedField() = delete
Default constructor.

TypedField(TypedField &&other) = delete
Copy constructor.

Move constructor

281

µSpectre Documentation, Release v0.1

virtual ~TypedField() = default
Destructor.

TypedField &operator=(TypedField &&other) = delete
Move assignment operator.

TypedField &operator=(const Parent &other)
Copy assignment operator.

TypedField &operator=(const Negative &other)
Copy assignment operator.

TypedField &operator=(const EigenRep_t &other)
Copy assignment operator.

virtual void set_zero() final
initialise field to zero (do more complicated initialisations through fully typed maps)

virtual void set_pad_size(size_t pad_size) final
add a pad region to the end of the field buffer; required for using this as e.g. an FFT workspace

virtual size_t buffer_size() const final
size of the internal buffer including the pad region (in scalars)

void push_back(const T &value)
add a new scalar value at the end of the field (incurs runtime cost, do not use this in any hot loop)

void push_back(const Eigen::Ref<const Eigen::Array<T , Eigen::Dynamic, Eigen::Dynamic>> &value)
add a new non-scalar value at the end of the field (incurs runtime cost, do not use this in any hot loop)

Public Members

friend FieldCollection

give access to collections

Public Static Functions

static TypedField &safe_cast(Field &other)
cast a reference to a base type to this type, with full checks

static const TypedField &safe_cast(const Field &other)
cast a const reference to a base type to this type, with full checks

static TypedField &safe_cast(Field &other, const Dim_t &nb_components)
cast a reference to a base type to this type safely, plus check whether it has the right number of components

static const TypedField &safe_cast(const Field &other, const Dim_t &nb_components)
cast a const reference to a base type to this type safely, plus check whether it has the right number of
components

282 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Protected Functions

inline TypedField(const std::string &unique_name, FieldCollection &collection, Dim_t nb_components)
Fields are supposed to only exist in the form of std::unique_ptrs held by a FieldCollection. The
Field constructor is protected to ensure this.

Parameters
• unique_name – unique field name (unique within a collection)

• nb_components – number of components to store per quadrature point

• collection – reference to the holding field collection.

virtual void resize(size_t size) final
resizes the field to the given size

Protected Attributes

std::vector<T> values = {}
storage of the raw field data

template<typename T>

class TypedFieldBase : public muGrid::Field
#include <field_typed.hh> forward declaration

Subclassed by muGrid::TypedField< T >, muGrid::WrappedField< T >, muGrid::TypedField< Scalar >

Public Types

using Scalar = T
stored scalar type

using EigenRep_t = Eigen::Matrix<T , Eigen::Dynamic, Eigen::Dynamic>
Eigen type used to represent the field’s data.

using Eigen_map = Eigen::Map<EigenRep_t>
eigen map (handle for EigenRep_t)

using Eigen_cmap = Eigen::Map<const EigenRep_t>
eigen const map (handle for EigenRep_t)

using Parent = Field
base class

283

µSpectre Documentation, Release v0.1

Public Functions

TypedFieldBase() = delete
Default constructor.

TypedFieldBase(const TypedFieldBase &other) = delete
Copy constructor.

TypedFieldBase(TypedFieldBase &&other) = default
Move constructor.

virtual ~TypedFieldBase() = default
Destructor.

TypedFieldBase &operator=(TypedFieldBase &&other) = delete
Move assignment operator.

TypedFieldBase &operator=(const TypedFieldBase &other)
Copy assignment operator.

TypedFieldBase &operator=(const Negative &other)
Copy assignment operator.

TypedFieldBase &operator=(const EigenRep_t &other)
Copy assignment operators.

Negative operator-() const
Unary negative.

TypedFieldBase &operator+=(const TypedFieldBase &other)
addition assignment

TypedFieldBase &operator-=(const TypedFieldBase &other)
subtraction assignment

inline virtual const std::type_info &get_stored_typeid() const final
return the type information of the stored scalar (for compatibility checking)

Eigen_map eigen_vec()
return a vector map onto the underlying data

Eigen_cmap eigen_vec() const
return a const vector map onto the underlying data

Eigen_map eigen_quad_pt()
return a matrix map onto the underlying data with one column per quadrature point

Eigen_cmap eigen_quad_pt() const
return a const matrix map onto the underlying data with one column per quadrature point

Eigen_map eigen_pixel()
return a matrix map onto the underlying data with one column per pixel

Eigen_cmap eigen_pixel() const
return a const matrix map onto the underlying data with one column per pixel

284 Chapter 7. Reference

µSpectre Documentation, Release v0.1

FieldMap<T , Mapping::Mut> get_pixel_map(const Dim_t &nb_rows = Unknown)
convenience function returns a map of this field, iterable per pixel.

Parameters
nb_rows – optional specification of the number of rows for the iterate. If left to default value,
a matrix of shape nb_components × nb_quad_pts is used

FieldMap<T , Mapping::Const> get_pixel_map(const Dim_t &nb_rows = Unknown) const
convenience function returns a const map of this field, iterable per pixel.

Parameters
nb_rows – optional specification of the number of rows for the iterate. If left to default value,
a matrix of shape nb_components × nb_quad_pts is used

FieldMap<T , Mapping::Mut> get_quad_pt_map(const Dim_t &nb_rows = Unknown)
convenience function returns a map of this field, iterable per quadrature point.

Parameters
nb_rows – optional specification of the number of rows for the iterate. If left to default value,
a column vector is used

FieldMap<T , Mapping::Const> get_quad_pt_map(const Dim_t &nb_rows = Unknown) const
convenience function returns a const map of this field, iterable per quadrature point.

Parameters
nb_rows – optional specification of the number of rows for the iterate. If left to default value,
a column vector is used

T *data() const
get the raw data ptr. don’t use unless interfacing with external libs

Protected Functions

inline TypedFieldBase(const std::string &unique_name, FieldCollection &collection, Dim_t
nb_components)

Fields are supposed to only exist in the form of std::unique_ptrs held by a FieldCollection.
TheFieldconstructor is protected to ensure this. Fields are instantiated through
theregister_field` methods FieldCollection.

Parameters
• unique_name – unique field name (unique within a collection)

• nb_components – number of components to store per quadrature point

• collection – reference to the holding field collection.

Eigen_map eigen_map(const Dim_t &nb_rows, const Dim_t &nb_cols)
back-end for the public non-const eigen_XXX functions

Eigen_cmap eigen_map(const Dim_t &nb_rows, const Dim_t &nb_cols) const
back-end for the public const eigen_XXX functions

void set_data_ptr(T *ptr)
set the data_ptr

285

µSpectre Documentation, Release v0.1

Protected Attributes

T *data_ptr = {}
in order to accomodate both registered fields (who own and manage their data) and unregistered tempo-
rary field proxies (piggy-backing on a chunk of existing memory as e.g., a numpy array) efficiently, the
get_ptr_to_entry methods need to be branchless. this means that we cannot decide on the fly whether
to return pointers pointing into values or into alt_values, we need to maintain an (shudder) raw data pointer
that is set either at construction (for unregistered fields) or at any resize event (which may invalidate existing
pointers). For the coder, this means that they need to be absolutely vigilant that any operation on the values
vector that invalidates iterators needs to be followed by an update of data_ptr, or we will get super annoying
memory bugs.

Friends

friend class FieldMap

template<typename T>

class TypedStateField : public muGrid::StateField
#include <field_collection.hh> forward declaration of the state field

forward declaration

The TypedStateField class is a byte compatible daughter class of the StateField class, and it can return
fully typed Field references.

Public Types

using Parent = StateField
base class

Public Functions

TypedStateField() = delete
Deleted default constructor.

TypedStateField(const TypedStateField &other) = delete
Copy constructor.

TypedStateField(TypedStateField &&other) = delete
Move constructor.

virtual ~TypedStateField() = default
Destructor.

TypedStateField &operator=(const TypedStateField &other) = delete
Copy assignment operator.

TypedStateField &operator=(TypedStateField &&other) = delete
Move assignment operator.

286 Chapter 7. Reference

µSpectre Documentation, Release v0.1

virtual const std::type_info &get_stored_typeid() const final
return type_id of stored type

TypedField<T> ¤t()
return a reference to the current field

const TypedField<T> ¤t() const
return a const reference to the current field

const TypedField<T> &old(size_t nb_steps_ago = 1) const
return a const reference to the field which was current nb_steps_ago steps ago

Protected Functions

TypedStateField(const std::string &unique_prefix, FieldCollection &collection, Dim_t nb_memory, Dim_t
nb_components)

protected constructor, to avoid the creation of unregistered fields. Users should create fields through the
muGrid::FieldCollection::register_real_field() (or int, uint, compplex) factory functions.

RefVector<Field> &get_fields()
return a reference to the storage of the constituent fields

Protected Attributes

friend FieldCollection

give access to the protected state field constructor

Friends

friend class StateFieldMap< T, Mapping::Const >

friend class StateFieldMap< T, Mapping::Mut >

class Vectors_t

Public Functions

inline explicit Vectors_t(const Dim_t &dim)

constructor

inline Vectors_t(const std::vector<Real> &data, const Dim_t &dim)

constructor

inline Eigen::Map<const Vector_t> operator[](const Dim_t &id) const
access operator:

inline Eigen::Map<Vector_t> operator[](const Dim_t &id)
access operator:

template<Dim_t DimS>

287

µSpectre Documentation, Release v0.1

inline Eigen::Map<Eigen::Matrix<Real, DimS, 1>> at(const Dim_t &id)
access to staic sized map of the vectors:

inline void push_back(const Vector_t &vector)
push back for adding new vector to the data of the class

inline void push_back(const Eigen::Map<Vector_t, 0> &vector)
push back for adding new vector to the data of the class

inline void push_back(const Eigen::Map<const Vector_t, 0> &vector)
push back for adding new vector to the data of the class

inline void push_back(const DynRcoord_t &vector)
push back for adding new vector from DynRcoord

inline std::vector<Real> get_a_vector(const Dim_t &id)

inline const Dim_t &get_dim()

inline iterator begin()

inline iterator end()

inline size_t size() const

Protected Attributes

std::vector<Real> data = {}

Dim_t dim

Private Types

using Vector_t = Eigen::Matrix<Real, Eigen::Dynamic, 1>

template<Dim_t dim>

class VoigtConversion
#include <voigt_conversion.hh> implements a bunch of static functions to convert between full and Voigt nota-
tion of tensors

Public Functions

VoigtConversion()

template<>
inline auto get_sym_mat() -> decltype(auto)

voigt vector indices for symmetric tensors

template<>
inline auto get_sym_mat() -> decltype(auto)

template<>

288 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline auto get_sym_mat() -> decltype(auto)

template<>
inline auto get_mat() -> decltype(auto)

voigt vector indices for non_symmetric tensors

template<>
inline auto get_mat() -> decltype(auto)

template<>
inline auto get_mat() -> decltype(auto)

template<>
inline auto get_vec() -> decltype(auto)

matrix indices from voigt vectors

template<>
inline auto get_vec() -> decltype(auto)

template<>
inline auto get_vec() -> decltype(auto)

template<>
inline auto get_factors() -> decltype(auto)

template<>
inline auto get_factors() -> decltype(auto)

template<>
inline auto get_factors() -> decltype(auto)

template<>
inline auto get_vec_vec() -> decltype(auto)

reordering between a row/column in voigt vs col-major matrix (e.g., stiffness tensor)

template<>
inline auto get_vec_vec() -> decltype(auto)

template<>
inline auto get_vec_vec() -> decltype(auto)

Public Static Functions

template<class Tens4, class Voigt, bool sym = true>
static inline void fourth_to_voigt(const Tens4 &t, Voigt &v)

obtain a fourth order voigt matrix from a tensor

template<class Tens4, bool sym = true> static inline Eigen::Matrix< Real,
vsize< sym >dim), vsize< sym >dim)> fourth_to_voigt (const Tens4 &t)

return a fourth order voigt matrix from a tensor

template<class Tens4> static inline Eigen::Matrix< Real, vsize< false >dim),
vsize< false >dim)> fourth_to_2d (const Tens4 &t)

return a fourth order non-symmetric voigt matrix from a tensor

template<class Tens2, class Voigt, bool sym = true>

289

µSpectre Documentation, Release v0.1

static inline void second_to_voigt(const Tens2 &t, Voigt &v)
probably obsolete

template<class Tens2, class Voigt>
static inline void gradient_to_voigt_strain(const Tens2 &F, Voigt &v)

probably obsolete

template<class Tens2, class Voigt>
static inline void gradient_to_voigt_GreenLagrange_strain(const Tens2 &F, Voigt &v)

probably obsolete

template<class Tens2, class Voigt, bool sym = true>
static inline void stress_from_voigt(const Voigt &v, Tens2 &sigma)

probably obsolete

static inline auto get_mat() -> decltype(auto)

static inline auto get_sym_mat() -> decltype(auto)

static inline auto get_vec() -> decltype(auto)

static inline auto get_factors() -> decltype(auto)

static inline auto get_vec_vec() -> decltype(auto)

Private Functions

template<> const Eigen::Matrix< Dim_t, 1, 1 > mat

voigt vector indices for non-symmetric tensors

template<> const Eigen::Matrix< Dim_t, 2, 2 > mat

voigt vector indices for non-symmetric tensors

template<> const Eigen::Matrix< Dim_t, 3, 3 > mat

voigt vector indices for non-symmetric tensors

template<> const Eigen::Matrix< Dim_t, 1, 1 > sym_mat

voigt vector indices

template<> const Eigen::Matrix< Dim_t, 2, 2 > sym_mat

voigt vector indices

template<> const Eigen::Matrix< Dim_t, 3, 3 > sym_mat

voigt vector indices

template<> const Eigen::Matrix< Dim_t, 1 *1, 2 > vec

matrix indices from voigt vectors

template<> const Eigen::Matrix< Dim_t, 2 *2, 2 > vec

matrix indices from voigt vectors

290 Chapter 7. Reference

µSpectre Documentation, Release v0.1

template<> const Eigen::Matrix< Dim_t, 3 *3, 2 > vec

matrix indices from voigt vectors

template<> const Eigen::Matrix< Real, vsize(1), 1 > factors

factors for shear components in voigt notation

template<> const Eigen::Matrix< Real, vsize(2), 1 > factors

factors for shear components in voigt notation

template<> const Eigen::Matrix< Real, vsize(3), 1 > factors

factors for shear components in voigt notation

template<> const Eigen::Matrix< Dim_t, 1 *1, 1 > vec_vec

reordering between a row/column in voigt vs col-major matrix (e.g., stiffness tensor)

template<> const Eigen::Matrix< Dim_t, 2 *2, 1 > vec_vec

template<> const Eigen::Matrix< Dim_t, 3 *3, 1 > vec_vec

Private Static Attributes

static const Eigen::Matrix<Dim_t, dim, dim> mat
matrix of vector index I as function of tensor indices i,j

static const Eigen::Matrix<Dim_t, dim, dim> sym_mat
matrix of vector index I as function of tensor indices i,j

static const Eigen::Matrix<Dim_t, dim * dim, 2> vec
array of matrix indices ij as function of vector index I

static const Eigen::Matrix<Real, vsize(dim), 1> factors
factors to multiply the strain by for voigt notation

static const Eigen::Matrix<Dim_t, dim * dim, 1> vec_vec
reordering between a row/column in voigt vs col-major matrix (e.g., stiffness tensor)

template<typename T>

class WrappedField : public muGrid::TypedFieldBase<T>
#include <field_typed.hh> Wrapper class providing a field view of existing memory. This is particularly useful
when dealing with input from external libraries (e.g., numpy arrays)

291

µSpectre Documentation, Release v0.1

Public Types

using Parent = TypedFieldBase<T>
base class

using EigenRep_t = typename Parent::EigenRep_t
convenience alias to the Eigen representation of this field’s data

Public Functions

WrappedField(const std::string &unique_name, FieldCollection &collection, Dim_t nb_components, size_t
size, T *ptr)

constructor from a raw pointer. Typically, this would be a reference to a numpy array from the python
bindings.

WrappedField(const std::string &unique_name, FieldCollection &collection, Dim_t nb_components,
Eigen::Ref<EigenRep_t> values)

constructor from an eigen array ref.

WrappedField() = delete
Default constructor.

WrappedField(const WrappedField &other) = delete
Copy constructor.

WrappedField(WrappedField &&other) = default
Move constructor.

virtual ~WrappedField() = default
Destructor.

WrappedField &operator=(const WrappedField &other) = delete
Copy assignment operator.

WrappedField &operator=(WrappedField &&other) = delete
Move assignment operator.

virtual void set_zero() final
initialise field to zero (do more complicated initialisations through fully typed maps)

virtual void set_pad_size(size_t pad_size) final
add a pad region to the end of the field buffer; required for using this as e.g. an FFT workspace

virtual size_t buffer_size() const final
size of the internal buffer including the pad region (in scalars)

292 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Public Members

friend FieldCollection

give access to collections

Public Static Functions

static std::unique_ptr<const WrappedField> make_const(const std::string &unique_name, FieldCollection
&collection, Dim_t nb_components, const
Eigen::Ref<const EigenRep_t> values)

Emulation of a const constructor.

Protected Functions

virtual void resize(size_t size) final
resizes the field to the given size

Protected Attributes

size_t size
size of the wrapped buffer

template<class ...Containers>

class ZipContainer
#include <iterators.hh> helper for the emulation of python zip

Public Functions

inline explicit ZipContainer(Containers&&... containers)
undocumented

inline decltype(auto) begin() const
undocumented

inline decltype(auto) end() const
undocumented

inline decltype(auto) begin()
undocumented

inline decltype(auto) end()
undocumented

293

µSpectre Documentation, Release v0.1

Private Types

using containers_t = std::tuple<Containers...>

Private Members

containers_t containers

template<class ...Iterators>

class ZipIterator
#include <iterators.hh> iterator for emulation of python zip

Public Functions

inline explicit ZipIterator(tuple_t iterators)
undocumented

inline decltype(auto) operator*()
undocumented

inline ZipIterator &operator++()
undocumented

inline bool operator==(const ZipIterator &other) const
undocumented

inline bool operator!=(const ZipIterator &other) const
undocumented

Private Types

using tuple_t = std::tuple<Iterators...>

Private Members

tuple_t iterators

namespace akantu

294 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Functions

template<class ...Iterators>
decltype(auto) zip_iterator(std::tuple<Iterators...> &&iterators_tuple)

emulates python zip()

template<class ...Containers>
decltype(auto) zip(Containers&&... conts)

emulates python’s zip()

template<class T, typename = std::enable_if_t<std::is_integral<std::decay_t<T>>::value>>
inline decltype(auto) arange(const T &stop)

emulates python’s range()

template<class T1, class T2, typename = std::enable_if_t<std::is_integral<std::common_type_t<T1,
T2>>::value>>
inline decltype(auto) constexpr arange(const T1 &start, const T2 &stop)

emulates python’s range()

template<class T1, class T2, class T3, typename = std::enable_if_t<std::is_integral<std::common_type_t<T1,
T2, T3>>::value>>
inline decltype(auto) constexpr arange(const T1 &start, const T2 &stop, const T3 &step)

emulates python’s range()

template<class Container>
inline decltype(auto) constexpr enumerate(Container &&container, size_t start_ = 0)

emulates python’s enumerate

namespace containers

namespace iterators

namespace tuple

Functions

template<class Tuple>
bool are_not_equal(Tuple &&a, Tuple &&b)

detail

template<class F, class Tuple>
void foreach_(F &&func, Tuple &&tuple)

detail

template<class F, class Tuple>
decltype(auto) transform(F &&func, Tuple &&tuple)

detail

namespace details

295

µSpectre Documentation, Release v0.1

Functions

template<typename ...Ts>
decltype(auto) make_tuple_no_decay(Ts&&... args)

eats up a bunch of arguments and returns them packed in a tuple

template<class F, class Tuple, size_t... Is>
void foreach_impl(F &&func, Tuple &&tuple, std::index_sequence<Is...>&&)

helper for static for loop

template<class F, class Tuple, size_t... Is>
decltype(auto) transform_impl(F &&func, Tuple &&tuple, std::index_sequence<Is...>&&)

detail

namespace Eigen

namespace internal

Typedefs

typedef muSpectre::Dim_t Dim_t
universal index type

typedef muSpectre::Real Real
universal real value type

namespace muFFT

Typedefs

using Matrix_t = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>

using Derivative_ptr = std::shared_ptr<DerivativeBase>
convenience alias

using Gradient_t = std::vector<Derivative_ptr>
convenience alias

using FFTEngine_ptr = std::shared_ptr<FFTEngineBase>
reference to fft engine is safely managed through a std::shared_ptr

296 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Enums

enum FFT_PlanFlags
Planner flags for FFT (follows FFTW, hopefully this choice will be compatible with alternative FFT imple-
mentations)

Values:

enumerator estimate
cheapest plan for slowest execution

enumerator measure
more expensive plan for fast execution

enumerator patient
very expensive plan for fastest execution

Functions

template<typename T>
T modulo(T a, T b)

module operator that can handle negative values

std::ostream &operator<<(std::ostream &os, const DiscreteDerivative &derivative)
Allows inserting muFFT::DiscreteDerivatives into std::ostreams

Gradient_t make_fourier_gradient(const Dim_t &spatial_dimension)
convenience function to build a spatial_dimension-al gradient operator using exact Fourier differentiation

Parameters
spatial_dimension – number of spatial dimensions

std::valarray<Real> fft_freqs(size_t nb_samples)
compute fft frequencies (in time (or length) units of of sampling periods), see numpy’s fftfreq function for
reference

std::valarray<Real> fft_freqs(size_t nb_samples, Real length)
compute fft frequencies in correct length or time units. Here, length refers to the total size of the domain
over which the fft is taken (for instance the length of an edge of an RVE)

template<size_t dim>
constexpr Ccoord_t<dim> get_nb_hermitian_grid_pts(Ccoord_t<dim> full_nb_grid_pts)

returns the hermition grid to correcsponding to a full grid, assuming that the last dimension is not fully
represented in reciprocal space

template<size_t MaxDim>
inline muGrid::DynCcoord<MaxDim> get_nb_hermitian_grid_pts(muGrid::DynCcoord<MaxDim>

full_nb_grid_pts)
returns the hermition grid to correcsponding to a full grid, assuming that the last dimension is not fully
represented in reciprocal space

297

µSpectre Documentation, Release v0.1

inline Int fft_freq(Int i, size_t nb_samples)
compute fft frequency (in time (or length) units of of sampling periods), see numpy’s fftfreq function for
reference

inline Real fft_freq(Int i, size_t nb_samples, Real length)
compute fft frequency in correct length or time units. Here, length refers to the total size of the domain
over which the fft is taken (for instance the length of an edge of an RVE)

template<size_t dim>
inline std::array<std::valarray<Real>, dim> fft_freqs(Ccoord_t<dim> nb_grid_pts)

Get fft_freqs for a grid

template<size_t dim>
inline std::array<std::valarray<Real>, dim> fft_freqs(Ccoord_t<dim> nb_grid_pts, std::array<Real, dim>

lengths)
Get fft_freqs for a grid in correct length or time units.

namespace internal

Functions

template<Dim_t Dim, size_t... I>
constexpr Ccoord_t<Dim> herm(const Ccoord_t<Dim> &nb_grid_pts, std::index_sequence<I ...>)

computes hermitian size according to FFTW

namespace muGrid

Typedefs

using optional = typename std::experimental::optional<T>
emulation std::optional (a C++17 feature)

using Decomp_t = Eigen::SelfAdjointEigenSolver<Eigen::Matrix<Real, dim, dim>>
It seems we only need to take logs of self-adjoint matrices

using Matrix_t = Eigen::Matrix<Real, Dim, Dim>

using MatrixFieldMap = StaticFieldMap<T, Mutability, internal::MatrixMap<T, NbRow, NbCol>,
IterationType>

Alias of muGrid::StaticFieldMap you wish to iterate over pixel by pixel or quadrature point by quadra-
ture point with statically sized Eigen::Matrix iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

298 Chapter 7. Reference

µSpectre Documentation, Release v0.1

• IterationType – whether to iterate over pixels or quadrature points

using ArrayFieldMap = StaticFieldMap<T, Mutability, internal::ArrayMap<T, NbRow, NbCol>,
IterationType>

Alias of muGrid::StaticFieldMap you wish to iterate over pixel by pixel or quadrature point by quadra-
ture point with* statically sized Eigen::Array iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• IterationType – whether to iterate over pixels or quadrature points

using ScalarFieldMap = StaticFieldMap<T, Mutability, internal::ScalarMap<T>, Iteration::QuadPt>
Alias of muGrid::StaticFieldMap over a scalar field you wish to iterate over quadrature point by quadra-
ture point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

using T1NFieldMap = StaticFieldMap<T, Mutability, internal::MatrixMap<T, Dim, 1>, Iteration::QuadPt>
Alias of muGrid::StaticNFieldMap over a first-rank tensor field you wish to iterate over quadrature
point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

using T1FieldMap = StaticFieldMap<T, Mutability, internal::MatrixMap<T, Dim, 1>, Iteration::QuadPt>
Alias of muGrid::StaticFieldMap over a second-rank tensor field you wish to iterate over quadrature
point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

using T2FieldMap = StaticFieldMap<T, Mutability, internal::MatrixMap<T, Dim, Dim>, Iteration::QuadPt>
Alias of muGrid::StaticFieldMap over a second-rank tensor field you wish to iterate over quadrature
point by quadrature point.

299

µSpectre Documentation, Release v0.1

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

using T4FieldMap = StaticFieldMap<T, Mutability, internal::MatrixMap<T, Dim * Dim, Dim * Dim>,
Iteration::QuadPt>

Alias of muGrid::StaticFieldMap over a fourth-rank tensor field you wish to iterate over quadrature
point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

using RealField = TypedField<Real>
Alias for real-valued fields.

using ComplexField = TypedField<Complex>
Alias for complex-valued fields.

using IntField = TypedField<Int>
Alias for integer-valued fields.

using UintField = TypedField<Uint>
Alias for unsigned integer-valued fields.

using Dim_t = int
Eigen uses signed integers for dimensions. For consistency, µGrid uses them througout the code. Needs to
represent -1 for Eigen

using Uint = unsigned int
type to use in math for unsigned integers

using Int = int
type to use in math for signed integers

using Real = double
type to use in math for real numbers

using Complex = std::complex<Real>
type to use in math for complex numbers

300 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using Ccoord_t = std::array<Dim_t, Dim>
Ccoord_t are cell coordinates, i.e. integer coordinates.

using Rcoord_t = std::array<Real, Dim>
Real space coordinates.

using DynCcoord_t = DynCcoord<threeD>
usually, we should not need omre than three dimensions

using DynRcoord_t = DynCcoord<threeD, Real>
usually, we should not need omre than three dimensions

using MappedMatrixField = MappedField<MatrixFieldMap<T, Mutability, NbRow, NbCol, IterationType>>
Alias of muGrid::MappedField for a map with corresponding muSpectre::Field you wish to iterate
over pixel by pixel or quadrature point by quadrature point with statically sized Eigen::Matrix iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• IterationType – whether to iterate over pixels or quadrature points

using MappedArrayField = MappedField<ArrayFieldMap<T, Mutability, NbRow, NbCol, IterationType>>
Alias of muGrid::MappedField for a map with corresponding muSpectre::Field you wish to iterate
over pixel by pixel or quadrature point by quadrature point with statically sized Eigen::Array iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• IterationType – whether to iterate over pixels or quadrature points

using MappedScalarField = MappedField<ScalarFieldMap<T, Mutability>>
Alias of muGrid::MappedField for a map of scalars with corresponding muSpectre::Field you wish
to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

301

µSpectre Documentation, Release v0.1

using MappedT1Field = MappedField<T1FieldMap<T, Mutability, Dim>>
Alias of muGrid::MappedField for a map of second-rank with corresponding muSpectre::Field you
wish to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensors

using MappedT2Field = MappedField<T2FieldMap<T, Mutability, Dim>>
Alias of muGrid::MappedField for a map of first-rank with corresponding muSpectre::Field you wish
to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensors

using MappedT4Field = MappedField<T4FieldMap<T, Mutability, Dim>>
Alias of muGrid::MappedField for a map of fourth-rank with corresponding muSpectre::Field you
wish to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensors

using MappedMatrixStateField = MappedStateField<MatrixStateFieldMap<T, Mutability, NbRow, NbCol,
NbMemory, IterationType>>

Alias of muGrid::MappedStateField for a map with corresponding muSpectre::StateField you
wish to iterate over pixel by pixel or quadrature point by quadrature point with statically sized
Eigen::Matrix iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• NbMemory – number of previous values to store

• IterationType – whether to iterate over pixels or quadrature points

302 Chapter 7. Reference

µSpectre Documentation, Release v0.1

using MappedArrayStateField = MappedStateField<ArrayStateFieldMap<T, Mutability, NbRow, NbCol,
NbMemory, IterationType>>

Alias of muGrid::MappedStateField for a map with corresponding muSpectre::StateField you
wish to iterate over pixel by pixel or quadrature point by quadrature point with statically sized
Eigen::Array iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• NbMemory – number of previous values to store

• IterationType – whether to iterate over pixels or quadrature points

using MappedScalarStateField = MappedStateField<ScalarStateFieldMap<T, Mutability, NbMemory>>
Alias of muGrid::MappedStateField for a map of scalars with corresponding
muSpectre::StateField you wish to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbMemory – number of previous values to store

using MappedT1StateNField = MappedStateField<T1StateNFieldMap<T, Mutability, Dim, NbMemory>>
Alias of muGrid::MappedStateField for a map of first-rank with corresponding
muSpectre::StateNField you wish to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensors

• NbMemory – number of previous values to store

using MappedT2StateField = MappedStateField<T2StateFieldMap<T, Mutability, Dim, NbMemory>>
Alias of muGrid::MappedStateField for a map of second-rank with corresponding
muSpectre::StateField you wish to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensors

303

µSpectre Documentation, Release v0.1

• NbMemory – number of previous values to store

using MappedT4StateField = MappedStateField<T4StateFieldMap<T, Mutability, Dim, NbMemory>>
Alias of muGrid::MappedStateField for a map of fourth-rank with corresponding
muSpectre::StateField you wish to iterate over quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensors

• NbMemory – number of previous values to store

using RealStateField = TypedStateField<Real>
Alias for real-valued state fields.

using ComplexStateField = TypedStateField<Complex>
Alias for complex-valued state fields.

using IntStateField = TypedStateField<Int>
Alias for integer-valued state fields.

using Uintfield = TypedStateField<Uint>
Alias for unsigned integer-valued state fields.

using MatrixStateFieldMap = StaticStateFieldMap<T, Mutability, internal::MatrixMap<T, NbRow,
NbCol>, NbMemory, IterationType>

Alias of muGrid::StaticStateFieldMap you wish to iterate over pixel by pixel or quadrature point by
quadrature point with statically sized Eigen::Matrix iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• NbMemory – number of previous values to store

• IterationType – whether to iterate over pixels or quadrature points

using ArrayStateFieldMap = StaticStateFieldMap<T, Mutability, internal::ArrayMap<T, NbRow, NbCol>,
NbMemory, IterationType>

Alias of muGrid::StaticStateFieldMap you wish to iterate over pixel by pixel or quadrature point by
quadrature point with* statically sized Eigen::Array iterates

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

304 Chapter 7. Reference

µSpectre Documentation, Release v0.1

• Mutability – whether or not the map allows to modify the content of the field

• NbRow – number of rows of the iterate

• NbCol – number of columns of the iterate

• NbMemory – number of previous values to store

• IterationType – whether to iterate over pixels or quadrature points

using ScalarStateFieldMap = StaticStateFieldMap<T, Mutability, internal::ScalarMap<T>, NbMemory,
Iteration::QuadPt>

Alias of muGrid::StaticStateFieldMap over a scalar field you wish to iterate over quadrature point by
quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• NbMemory – number of previous values to store

using T1StateNFieldMap = StaticStateFieldMap<T, Mutability, internal::MatrixMap<T, Dim, 1>,
NbMemory, Iteration::QuadPt>

Alias of muGrid::StaticStateNFieldMap over a first-rank tensor field you wish to iterate over quadra-
ture point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

• NbMemory – number of previous values to store

using T2StateFieldMap = StaticStateFieldMap<T, Mutability, internal::MatrixMap<T, Dim, Dim>,
NbMemory, Iteration::QuadPt>

Alias of muGrid::StaticStateNFieldMap over a second-rank tensor field you wish to iterate over
quadrature point by quadrature point.

Template Parameters
• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

• NbMemory – number of previous values to store

using T4StateFieldMap = StaticStateFieldMap<T, Mutability, internal::MatrixMap<T, Dim * Dim, Dim *
Dim>, NbMemory, Iteration::QuadPt>

Alias of muGrid::StaticStateFieldMap over a fourth-rank tensor field you wish to iterate over quadra-
ture point by quadrature point.

Template Parameters

305

µSpectre Documentation, Release v0.1

• T – scalar type stored in the field, must be one of muGrid::Real, muGrid::Int,
muGrid::Uint, muGrid::Complex

• Mutability – whether or not the map allows to modify the content of the field

• Dim – spatial dimension of the tensor

• NbMemory – number of previous values to store

using T4Mat = Eigen::Matrix<T, Dim * Dim, Dim * Dim>
simple adapter function to create a matrix that can be mapped as a tensor

using T4MatMap = std::conditional_t<ConstMap, Eigen::Map<const T4Mat<T, Dim>>, Eigen::Map<T4Mat<T,
Dim>>>

Map onto muGrid::T4Mat

Enums

enum Iteration
Used to specify whether to iterate over pixels or quadrature points in field maps

Values:

enumerator Pixel

enumerator QuadPt

enum Mapping
Maps can give constant or mutable access to the mapped field through their iterators or access operators.

Values:

enumerator Const

enumerator Mut

Functions

template<Dim_t order, Dim_t dim, typename Fun_t>
inline decltype(auto) call_sizes(Fun_t &&fun)

takes a lambda and calls it with the proper Eigen::Sizes unpacked as arguments. Is used to call con-
structors of a Eigen::Tensor or map thereof in a context where the spatial dimension is templated

static constexpr Dim_t ct_sqrt(Dim_t res, Dim_t l, Dim_t r)

static constexpr Dim_t ct_sqrt(Dim_t res)

template<Dim_t dim>

306 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline decltype(auto) logm(const log_comp::Mat_t<dim> &mat)
computes the matrix logarithm efficiently for dim=1, 2, or 3 for a diagonizable tensor. For larger tensors,
better use the direct eigenvalue/vector computation

template<class Derived, template<class Matrix_t> class DecompType = Eigen::SelfAdjointEigenSolver>
inline decltype(auto) spectral_decomposition(const Eigen::MatrixBase<Derived> &mat)

compute the spectral decomposition

template<Dim_t Dim>
inline decltype(auto) logm_alt(const Decomp_t<Dim> &spectral_decomp)

Uses a pre-existing spectral decomposition of a matrix to compute its logarithm

Parameters
spectral_decomp – spectral decomposition of a matrix

Template Parameters
Dim – spatial dimension (i.e., number of rows and colums in the matrix)

template<class Derived>
inline decltype(auto) logm_alt(const Eigen::MatrixBase<Derived> &mat)

compute the matrix log with a spectral decomposition. This may not be the most efficient way to do this

template<Dim_t Dim, template<class Matrix_t> class DecompType = Eigen::SelfAdjointEigenSolver>
inline decltype(auto) expm(const Decomp_t<Dim> &spectral_decomp)

Uses a pre-existing spectral decomposition of a matrix to compute its exponential

Parameters
spectral_decomp – spectral decomposition of a matrix

Template Parameters
Dim – spatial dimension (i.e., number of rows and colums in the matrix)

template<class Derived>
inline decltype(auto) expm(const Eigen::MatrixBase<Derived> &mat)

compute the matrix exponential with a spectral decomposition. This may not be the most efficient way to
do this

template<typename T, size_t Dim>
Eigen::Map<Eigen::Matrix<T , Dim, 1>> eigen(std::array<T , Dim> &coord)

return a Eigen representation of the data stored in a std::array (e.g., for doing vector operations on a coor-
dinate)

template<typename T, size_t Dim>
Eigen::Map<const Eigen::Matrix<T , Dim, 1>> eigen(const std::array<T , Dim> &coord)

return a constant Eigen representation of the data stored in a std::array (e.g., for doing vector operations on
a coordinate)

template<typename T, size_t MaxDim>
Eigen::Map<Eigen::Matrix<T , Eigen::Dynamic, 1>> eigen(DynCcoord<MaxDim, T> &coord)

return a Eigen representation of the data stored in a std::array (e.g., for doing vector operations on a coor-
dinate)

template<typename T, size_t MaxDim>
Eigen::Map<const Eigen::Matrix<T , Eigen::Dynamic, 1>> eigen(const DynCcoord<MaxDim, T> &coord)

return a const Eigen representation of the data stored in a std::array (e.g., for doing vector operations on a
coordinate)

template<typename T>

307

µSpectre Documentation, Release v0.1

std::ostream &operator<<(std::ostream &os, const std::vector<T> &values)
Allows inserting std::vector into std::ostreams

template<typename T, size_t dim>
std::ostream &operator<<(std::ostream &os, const std::array<T , dim> &values)

Allows inserting muGrid::Ccoord_t and muGrid::Rcoord_t into std::ostreams

template<size_t MaxDim, typename T>
std::ostream &operator<<(std::ostream &os, const DynCcoord<MaxDim, T> &values)

Allows inserting muGrid::DynCcoord into std::ostreams

template<size_t dim>
Rcoord_t<dim> operator/(const Rcoord_t<dim> &a, const Rcoord_t<dim> &b)

element-wise division

template<size_t dim>
Rcoord_t<dim> operator/(const Rcoord_t<dim> &a, const Ccoord_t<dim> &b)

element-wise division

template<typename R, typename I>
constexpr R ipow(R base, I exponent)

compile-time potentiation required for field-size computations

template<typename T>
std::vector<Dim_t> numpy_copy(const TypedFieldBase<T> &field, pybind11::array_t<T ,

pybind11::array::f_style> array)

template<typename T>
pybind11::array_t<T , pybind11::array::f_style> numpy_wrap(const TypedFieldBase<T> &field,

std::vector<Dim_t> components_shape =
std::vector<Dim_t>{})

template<typename T>
pybind11::tuple to_tuple(T a)

template<typename T4>
inline auto get(const Eigen::MatrixBase<T4> &t4, Dim_t i, Dim_t j, Dim_t k, Dim_t l) -> decltype(auto)

provides index-based access to fourth-order Tensors represented by square matrices

template<typename T4>
inline auto get(Eigen::MatrixBase<T4> &t4, Dim_t i, Dim_t j, Dim_t k, Dim_t l) -> decltype(t4.coeffRef(i,

j))
provides constant index-based access to fourth-order Tensors represented by square matrices

Variables

constexpr Dim_t oneD = {1}
constant for a one-dimensional problem

constexpr Dim_t twoD = {2}
constant for a two-dimensional problem

308 Chapter 7. Reference

µSpectre Documentation, Release v0.1

constexpr Dim_t threeD = {3}
constant for a three-dimensional problem

constexpr Dim_t firstOrder = {1}
constant for vectors

constexpr Dim_t secondOrder = {2}
constant second-order tensors

constexpr Dim_t fourthOrder = {4}
constant fourth-order tensors

constexpr Dim_t OneQuadPt = {1}
constant for 1 quadrature point/pixel

constexpr Real pi = {3.1415926535897932384626433}
convenience definitions

static constexpr Dim_t Unknown = {-1}
constant used to explicitly denote unknown positive integers

namespace CcoordOps

Functions

Dim_t get_index(const DynCcoord_t &nb_grid_pts, const DynCcoord_t &locations, const DynCcoord_t
&ccoord)

get the linear index of a pixel in a given grid

Real compute_volume(const DynRcoord_t &lenghts)
these functions can be used whenever it is necessary to calcluate the volume of a cell or each pixle of the
cell

Real compute_pixel_volume(const DynCcoord_t &nb_grid_pts, const DynRcoord_t &lenghts)

template<size_t dim, typename T>
constexpr std::array<T , dim> get_cube(T nb_grid_pts)

returns a grid of equal number of grid points in each direction

template<size_t MaxDim = threeD>
DynCcoord<MaxDim> get_cube(const Dim_t &dim, const Dim_t &nb_grid_pts)

returns a grid of equal number of grid points in each direction

template<size_t dim>
Eigen::Matrix<Real, dim, 1> get_vector(const Ccoord_t<dim> &ccoord, Real pix_size = 1.)

return physical vector of a cell of cubic pixels

template<size_t dim, typename T>

309

µSpectre Documentation, Release v0.1

Eigen::Matrix<T , dim, 1> get_vector(const Ccoord_t<dim> &ccoord, Eigen::Matrix<T , Dim_t(dim), 1>
pix_size)

return physical vector of a cell of general pixels

template<size_t dim, typename T>
Eigen::Matrix<T , dim, 1> get_vector(const Ccoord_t<dim> &ccoord, const std::array<T , dim> &pix_size)

return physical vector of a cell of general pixels

template<size_t dim, size_t MaxDim, typename T>
Eigen::Matrix<T , dim, 1> get_vector(const Ccoord_t<dim> &ccoord, const DynCcoord<MaxDim, T>

&pix_size)
return physical vector of a cell of general pixels

template<size_t dim>
Eigen::Matrix<Real, dim, 1> get_vector(const DynCcoord_t &ccoord, Real pix_size = 1.)

return physical vector of a cell of cubic pixels

template<size_t dim, typename T>
Eigen::Matrix<T , dim, 1> get_vector(const DynCcoord_t ccoord, Eigen::Matrix<T , Dim_t(dim), 1>

pix_size)
return physical vector of a cell of general pixels

template<size_t dim, typename T>
Eigen::Matrix<T , dim, 1> get_vector(const DynCcoord_t ccoord, const std::array<T , dim> &pix_size)

return physical vector of a cell of general pixels

template<size_t dim, size_t MaxDim, typename T>
Eigen::Matrix<T , dim, 1> get_vector(const DynCcoord_t ccoord, const DynCcoord<MaxDim, T>

&pix_size)
return physical vector of a cell of general pixels

template<size_t dim>
constexpr Ccoord_t<dim> get_default_strides(const Ccoord_t<dim> &nb_grid_pts)

get all strides from a column-major grid

template<size_t MaxDim>
constexpr DynCcoord<MaxDim> get_default_strides(const DynCcoord<MaxDim> &nb_grid_pts)

get all strides from a row-major grid

template<size_t dim>
constexpr Ccoord_t<dim> get_ccoord(const Ccoord_t<dim> &nb_grid_pts, const Ccoord_t<dim>

&locations, Dim_t index)
get the i-th pixel in a grid of size nb_grid_pts

template<size_t dim, size_t... I>
constexpr Ccoord_t<dim> get_ccoord(const Ccoord_t<dim> &nb_grid_pts, const Ccoord_t<dim>

&locations, Dim_t index, std::index_sequence<I ...>)
get the i-th pixel in a grid of size nb_grid_pts

template<size_t... I>
constexpr Ccoord_t<1> get_ccoord(const Ccoord_t<1> &nb_grid_pts, const Ccoord_t<1> &locations,

Dim_t index, std::index_sequence<I ...>)
get the i-th pixel in a grid of size nb_grid_pts - specialization for one dimension

template<size_t dim>

310 Chapter 7. Reference

µSpectre Documentation, Release v0.1

constexpr Ccoord_t<dim> get_ccoord_from_strides(const Ccoord_t<dim> &nb_grid_pts, const
Ccoord_t<dim> &locations, const Ccoord_t<dim>
&strides, Dim_t index)

get the i-th pixel in a grid of size nb_grid_pts

template<size_t MaxDim>
inline DynCcoord<MaxDim> get_ccoord_from_strides(const DynCcoord<MaxDim> &nb_grid_pts,

const DynCcoord<MaxDim> &locations, const
DynCcoord<MaxDim> &strides, Dim_t index)

get the i-th pixel in a grid of size nb_grid_pts

template<size_t dim>
constexpr Dim_t get_index(const Ccoord_t<dim> &nb_grid_pts, const Ccoord_t<dim> &locations, const

Ccoord_t<dim> &ccoord)
get the linear index of a pixel in a given grid

template<size_t dim>
constexpr Dim_t get_index_from_strides(const Ccoord_t<dim> &strides, const Ccoord_t<dim>

&ccoord)
get the linear index of a pixel given a set of strides

template<size_t MaxDim>
Dim_t get_index_from_strides(const DynCcoord<MaxDim> &strides, const DynCcoord<MaxDim>

&ccoord)
get the linear index of a pixel given a set of strides

template<size_t dim>
constexpr size_t get_size(const Ccoord_t<dim> &nb_grid_pts)

get the number of pixels in a grid

template<size_t MaxDim>
size_t get_size(const DynCcoord<MaxDim> &nb_grid_pts)

get the number of pixels in a grid

template<size_t dim>
constexpr size_t get_size_from_strides(const Ccoord_t<dim> &nb_grid_pts, const Ccoord_t<dim>

&strides)
get the number of pixels in a grid given its strides

namespace internal

Functions

template<typename T>
constexpr T ret(T val, size_t)

simple helper returning the first argument and ignoring the second

template<Dim_t Dim, typename T, size_t... I>
constexpr std::array<T , Dim> cube_fun(T val, std::index_sequence<I ...>)

helper to build cubes

template<Dim_t Dim, size_t... I>

311

µSpectre Documentation, Release v0.1

constexpr Ccoord_t<Dim> herm(const Ccoord_t<Dim> &nb_grid_pts, std::index_sequence<I ...>)
computes hermitian size according to FFTW

template<Dim_t Dim>
constexpr Dim_t stride(const Ccoord_t<Dim> &nb_grid_pts, const size_t index)

compute the stride in a direction of a column-major grid

template<Dim_t Dim, size_t... I>
constexpr Ccoord_t<Dim> compute_strides(const Ccoord_t<Dim> &nb_grid_pts,

std::index_sequence<I ...>)
get all strides from a column-major grid (helper function)

namespace EigenCheck

namespace internal

Functions

template<Dim_t Dim, Dim_t NbRow, Dim_t NbCol>
inline constexpr Dim_t get_rank()

determine the rank of a Dim-dimensional tensor represented by an Eigen::Matrix of shape NbRow ×
NbCol

Template Parameters
• Dim – spatial dimension

• NbRow – number of rows

• NbCol – number of columns

namespace internal

Typedefs

using MatrixMap = EigenMap<T, Eigen::Matrix<T, NbRow, NbCol>>
internal convenience alias for creating maps iterating over statically sized Eigen::Matrixs

using ArrayMap = EigenMap<T, Eigen::Array<T, NbRow, NbCol>>
internal convenience alias for creating maps iterating over statically sized Eigen::Arrays

namespace log_comp

312 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Typedefs

using Mat_t = Eigen::Matrix<Real, dim, dim>
Matrix type used for logarithm evaluation.

using Vec_t = Eigen::Matrix<Real, dim, 1>
Vector type used for logarithm evaluation.

Functions

template<Dim_t dim, Dim_t i>
inline decltype(auto) P(const Vec_t<dim> &eigs, const Mat_t<dim> &T)

Product term.

template<Dim_t dim>
inline decltype(auto) Sum(const Vec_t<dim> &eigs, const Mat_t<dim> &T)

sum implementation

namespace Matrices

Typedefs

using Tens2_t = Eigen::Matrix<Real, dim, dim>
second-order tensor representation

using Tens4_t = T4Mat<Real, dim>
fourth-order tensor representation

Functions

template<Dim_t dim>
inline constexpr Tens2_t<dim> I2()

compile-time second-order identity

template<typename T1, typename T2>
inline decltype(auto) constexpr outer(T1 &&A, T2 &&B)

compile-time outer tensor product as defined by Curnier R_ijkl = A_ij.B_klxx 0123 01 23

template<typename Derived1, typename Derived2>
inline decltype(auto) constexpr outer_under(const Eigen::MatrixBase<Derived1> &A, const

Eigen::MatrixBase<Derived2> &B)
compile-time underlined outer tensor product as defined by Curnier R_ijkl = A_ik.B_jlxx 0123 02 13 0213
01 23 <- this defines the shuffle order

template<typename T1, typename T2>
inline decltype(auto) constexpr outer_over(T1 &&A, T2 &&B)

compile-time overlined outer tensor product as defined by Curnier R_ijkl = A_il.B_jkxx 0123 03 12 0231
01 23 <- this defines the shuffle order

template<typename T4, typename T2>

313

µSpectre Documentation, Release v0.1

inline constexpr auto tensmult(const Eigen::MatrixBase<T4> &A, const Eigen::MatrixBase<T2> &B) ->
Tens2_t<T2::RowsAtCompileTime>

Standart tensor multiplication

template<Dim_t dim>
inline constexpr Tens4_t<dim> Itrac()

compile-time fourth-order tracer

template<Dim_t dim>
inline constexpr Tens4_t<dim> Iiden()

compile-time fourth-order identity

template<Dim_t dim>
inline constexpr Tens4_t<dim> Itrns()

compile-time fourth-order transposer

template<Dim_t dim>
inline constexpr Tens4_t<dim> Isymm()

compile-time fourth-order symmetriser

template<Dim_t Dim, class T1, class T2>
decltype(auto) dot(T1 &&t1, T2 &&t2)

simple contraction between two tensors. The result depends on the rank of the tesnors, see documentation
for muGrid::internal::Dotter

template<Dim_t Dim, class T1, class T2>
decltype(auto) ddot(T1 &&t1, T2 &&t2)

double contraction between two tensors. The result depends on the rank of the tesnors, see documentation
for muGrid::internal::Dotter

namespace internal

namespace Tensors

Typedefs

using Tens2_t = Eigen::TensorFixedSize<Real, Eigen::Sizes<dim, dim>>
second-order tensor representation

using Tens4_t = Eigen::TensorFixedSize<Real, Eigen::Sizes<dim, dim, dim, dim>>
fourth-order tensor representation

Functions

template<Dim_t dim>
inline constexpr Tens2_t<dim> I2()

compile-time second-order identity

template<Dim_t dim, typename T1, typename T2>

314 Chapter 7. Reference

µSpectre Documentation, Release v0.1

inline decltype(auto) constexpr outer(T1 &&A, T2 &&B)
compile-time outer tensor product as defined by Curnier R_ijkl = A_ij.B_klxx 0123 01 23

template<Dim_t dim, typename T1, typename T2>
inline decltype(auto) constexpr outer_under(T1 &&A, T2 &&B)

compile-time underlined outer tensor product as defined by Curnier R_ijkl = A_ik.B_jlxx 0123 02 13 0213
01 23 <- this defines the shuffle order

template<Dim_t dim, typename T1, typename T2>
inline decltype(auto) constexpr outer_over(T1 &&A, T2 &&B)

compile-time overlined outer tensor product as defined by Curnier R_ijkl = A_il.B_jkxx 0123 03 12 0231
01 23 <- this defines the shuffle order

template<Dim_t dim>
inline constexpr Tens4_t<dim> I4S()

compile-time fourth-order symmetrising identity

namespace muSpectre

Typedefs

using MatrixXXc = Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic>
convenience alias

using Grad_t = Matrices::Tens2_t<Dim>
Field type that solvers expect gradients to be expressed in

using LoadSteps_t = std::vector<Eigen::MatrixXd>
Input type for specifying a load regime

Enums

enum RotationOrder
The rotation matrices depend on the order in which we rotate around different axes. See [[https://en.
wikipedia.org/wiki/Euler_angles#Rotation_matrix]] to find the matrices

Values:

enumerator Z

enumerator XZXEuler

enumerator XYXEuler

enumerator YXYEuler

enumerator YZYEuler

315

https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix

µSpectre Documentation, Release v0.1

enumerator ZYZEuler

enumerator ZXZEuler

enumerator XZYTaitBryan

enumerator XYZTaitBryan

enumerator YXZTaitBryan

enumerator YZXTaitBryan

enumerator ZYXTaitBryan

enumerator ZXYTaitBryan

enum Formulation
continuum mechanics flags

Values:

enumerator finite_strain
causes evaluation in PK1(F)

enumerator small_strain
causes evaluation in ()

enumerator small_strain_sym
symmetric storage as vector

enumerator native
causes the material’s native measures to be used in evaluation

enum SplitCell
split cell flags

Values:

enumerator laminate

enumerator simple

enumerator no

316 Chapter 7. Reference

µSpectre Documentation, Release v0.1

enum FiniteDiff
finite differences flags

Values:

enumerator forward
f/x (f(x+x) - f(x))/x

enumerator backward
f/x (f(x) - f(x-x))/x

enumerator centred
f/x (f(x+x) - f(x-x))/2x

enum StressMeasure
Material laws can declare which type of stress measure they provide, and µSpectre will handle conversions

Values:

enumerator Cauchy
Cauchy stress

enumerator PK1
First Piola-Kirchhoff stress.

enumerator PK2
Second Piola-Kirchhoff stress.

enumerator Kirchhoff
Kirchhoff stress

enumerator Biot
Biot stress.

enumerator Mandel
Mandel stress.

enumerator no_stress_
only for triggering static_asserts

enum StrainMeasure
Material laws can declare which type of strain measure they require and µSpectre will provide it

Values:

enumerator Gradient
placement gradient (y/x)

317

µSpectre Documentation, Release v0.1

enumerator Infinitesimal
small strain tensor .5(u + u)

enumerator GreenLagrange
Green-Lagrange strain .5(F·F - I)

enumerator Biot
Biot strain.

enumerator Log
logarithmic strain

enumerator Almansi
Almansi strain.

enumerator RCauchyGreen
Right Cauchy-Green tensor.

enumerator LCauchyGreen
Left Cauchy-Green tensor.

enumerator no_strain_
only for triggering static_assert

enum ElasticModulus
all isotropic elastic moduli to identify conversions, such as E = µ(3 + 2µ)/(+µ). For the full description,
see https://en.wikipedia.org/wiki/Lam%C3%A9_parameters Not all the conversions are implemented, so
please add as needed

Values:

enumerator Bulk
Bulk modulus K.

enumerator K
alias for ElasticModulus::Bulk

enumerator Young
Young’s modulus E.

enumerator E
alias for ElasticModulus::Young

enumerator lambda
Lamé’s first parameter

318 Chapter 7. Reference

https://en.wikipedia.org/wiki/Lam%C3%A9_parameters

µSpectre Documentation, Release v0.1

enumerator Shear
Shear modulus G or µ

enumerator G
alias for ElasticModulus::Shear

enumerator mu
alias for ElasticModulus::Shear

enumerator Poisson
Poisson’s ratio

enumerator nu
alias for ElasticModulus::Poisson

enumerator Pwave
P-wave modulus M.

enumerator M
alias for ElasticModulus::Pwave

enumerator no_modulus_

enum IsStrainInitialised
Values:

enumerator True

enumerator False

Functions

template<class FFTEngine = muFFT ::FFTWEngine>
inline std::unique_ptr<ProjectionBase> cell_input(const DynCcoord_t &nb_grid_pts, const DynRcoord_t

&lengths, const Formulation &form,
muFFT ::Gradient_t gradient, const
muFFT ::Communicator &comm =
muFFT ::Communicator())

Convenience function to create consistent input for the constructor of * muSpectre::Cell. Creates a
unique ptr to a Projection operator (with appropriate FFT_engine) to be used in a cell constructor

Parameters
• nb_grid_pts – resolution of the discretisation grid in each spatial directional

• lengths – length of the computational domain in each spatial direction

• form – problem formulation (small vs finite strain)

319

µSpectre Documentation, Release v0.1

• gradient – gradient operator to use (i.e., “exact” Fourier derivation, finite differences,
etc)

• comm – communicator used for solving distributed problems

template<class FFTEngine = muFFT ::FFTWEngine>
inline std::unique_ptr<ProjectionBase> cell_input(const DynCcoord_t &nb_grid_pts, const DynRcoord_t

&lengths, const Formulation &form, const
muFFT ::Communicator &comm =
muFFT ::Communicator())

Convenience function to create consistent input for the constructor of * muSpectre::Cell. Creates a
unique ptr to a Projection operator (with appropriate FFT_engine) to be used in a cell constructor. Uses the
“exact” fourier derivation operator for calculating gradients

Parameters
• nb_grid_pts – resolution of the discretisation grid in each spatial directional

• lengths – length of the computational domain in each spatial direction

• form – problem formulation (small vs finite strain)

• comm – communicator used for solving distributed problems

template<typename Cell_t = Cell, class FFTEngine = muFFT ::FFTWEngine>
inline Cell_t make_cell(DynCcoord_t nb_grid_pts, DynRcoord_t lengths, Formulation form,

muFFT ::Gradient_t gradient, const muFFT ::Communicator &comm =
muFFT ::Communicator())

convenience function to create a cell (avoids having to build and move the chain of unique_ptrs

Parameters
• nb_grid_pts – resolution of the discretisation grid in each spatial directional

• lengths – length of the computational domain in each spatial direction

• form – problem formulation (small vs finite strain)

• gradient – gradient operator to use (i.e., “exact” Fourier derivation, finite differences,
etc)

• comm – communicator used for solving distributed problems

template<typename Cell_t = Cell, class FFTEngine = muFFT ::FFTWEngine>
inline Cell_t make_cell(DynCcoord_t nb_grid_pts, DynRcoord_t lengths, Formulation form, const

muFFT ::Communicator &comm = muFFT ::Communicator())
convenience function to create a cell (avoids having to build and move the chain of unique_ptrs. Uses the
“exact” fourier derivation operator for calculating gradients

Parameters
• nb_grid_pts – resolution of the discretisation grid in each spatial directional

• lengths – length of the computational domain in each spatial direction

• form – problem formulation (small vs finite strain)

• comm – communicator used for solving distributed problems

template<typename Cell_t = CellSplit, class FFTEngine = muFFT ::FFTWEngine>
inline Cell_t make_cell_split(DynCcoord_t nb_grid_pts, DynRcoord_t lengths, Formulation form,

muFFT ::Gradient_t gradient, const muFFT ::Communicator &comm =
muFFT ::Communicator())

320 Chapter 7. Reference

µSpectre Documentation, Release v0.1

template<typename Cell_t = CellSplit, class FFTEngine = muFFT ::FFTWEngine>
std::unique_ptr<Cell_t> make_cell_ptr(const DynCcoord_t &nb_grid_pts, const DynRcoord_t &lengths,

const Formulation &form, muFFT ::Gradient_t gradient, const
muFFT ::Communicator &comm = muFFT ::Communicator())

std::ostream &operator<<(std::ostream &os, Formulation f)
inserts muSpectre::Formulations into std::ostreams

std::ostream &operator<<(std::ostream &os, StressMeasure s)
inserts muSpectre::StressMeasures into std::ostreams

std::ostream &operator<<(std::ostream &os, StrainMeasure s)
inserts muSpectre::StrainMeasures into std::ostreams

void banner(std::string name, Uint year, std::string cpy_holder)
Copyright banner to be printed to the terminal by executables Arguments are the executable’s name, year
of writing and the name

• address of the copyright holder

template<bool sym = true>
constexpr Dim_t vsize(Dim_t dim)

compile time computation of voigt vector

constexpr Dim_t dof_for_formulation(const Formulation form, const Dim_t dim)

compute the number of degrees of freedom to store for the strain tensor given dimension dim

inline constexpr bool operator<(ElasticModulus A, ElasticModulus B)
define comparison in order to exploit that moduli can be expressed in terms of any two other moduli in any
order (e.g. K = K(E,) = K(, E)

constexpr StrainMeasure get_stored_strain_type(Formulation form)

Compile-time function to g strain measure stored by muSpectre depending on the formulation

constexpr StressMeasure get_stored_stress_type(Formulation form)

Compile-time function to g stress measure stored by muSpectre depending on the formulation

constexpr StrainMeasure get_formulation_strain_type(Formulation form, StrainMeasure expected)
Compile-time functions to get the stress and strain measures after they may have been modified by choosing
a formulation.

For instance, a law that expecs a Green-Lagrange strain as input will get the infinitesimal strain tensor
instead in a small strain computation

template<typename T>
T modulo(T a, T b)

bool check_symmetry(const Eigen::Ref<const Eigen::ArrayXXd> &eps, Real rel_tol)
check whether a strain is symmetric, for the purposes of small strain problems

Eigen::IOFormat format (Eigen::FullPrecision, 0, ", ", ",\, "[", "]", "[", "]")

produces numpy-compatible full precision text output. great for debugging

std::vector<OptimizeResult> newton_cg(Cell &cell, const LoadSteps_t &load_steps, SolverBase &solver,
Real newton_tol, Real equil_tol, Dim_t verbose, IsStrainInitialised
strain_init)

321

µSpectre Documentation, Release v0.1

Uses the Newton-conjugate Gradient method to find the static equilibrium of a cell given a series of mean
applied strain(for Formulation::small_strain and H (=F-I) for Formulation::finite_strain). The initial macro-
scopic strain state is set to zero in cell initialisation.

std::vector<OptimizeResult> de_geus(Cell &cell, const LoadSteps_t &load_steps, SolverBase &solver, Real
newton_tol, Real equil_tol, Dim_t verbose, IsStrainInitialised
strain_init)

Uses the method proposed by de Geus method to find the static given a series of mean applied strain(for
Formulation::small_strain and H (=F-I) for Formulation::finite_strain). The initial macroscopic strain state
is set to zero in cell initialisation.

inline OptimizeResult newton_cg(Cell &cell, const Eigen::Ref<Eigen::MatrixXd> load_step, SolverBase
&solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0,
IsStrainInitialised strain_init = IsStrainInitialised::False)

Uses the Newton-conjugate Gradient method to find the static equilibrium of a cell given a mean applied
strain.

inline OptimizeResult de_geus(Cell &cell, const Eigen::Ref<Eigen::MatrixXd> load_step, SolverBase
&solver, Real newton_tol, Real equil_tol, Dim_t verbose = 0,
IsStrainInitialised strain_init = IsStrainInitialised::False)

Uses the method proposed by de Geus method to find the static equilibrium of a cell given a mean applied
strain.

namespace internal

Functions

template<size_t DimS, class FFTEngine>
inline std::unique_ptr<ProjectionBase> cell_input_helper(const DynCcoord_t &nb_grid_pts, const

DynRcoord_t &lengths, const Formulation
&form, muFFT ::Gradient_t gradient, const
muFFT ::Communicator &comm =
muFFT ::Communicator())

function to create consistent input for the constructor of muSpectre::Cell. Users should never need to
call this function, for internal use only

namespace MatTB

Enums

enum NeedTangent
Flag used to designate whether the material should compute both stress and tangent moduli or only stress

Values:

enumerator yes
compute both stress and tangent moduli

enumerator no
compute only stress

322 Chapter 7. Reference

µSpectre Documentation, Release v0.1

Functions

template<StrainMeasure In, StrainMeasure Out, class Strain_t>
decltype(auto) convert_strain(Strain_t &&strain)

set of functions returning one strain measure as a function of another

template<ElasticModulus Out, ElasticModulus In1, ElasticModulus In2>
inline constexpr Real convert_elastic_modulus(const Real &in1, const Real &in2)

allows the conversion from any two distinct input moduli to a chosen output modulus

template<Dim_t Dim, FiniteDiff FinDif = FiniteDiff ::centred, class FunType, class Derived>
inline muGrid::T4Mat<Real, Dim> compute_numerical_tangent(FunType &&fun, const

Eigen::MatrixBase<Derived> &strain,
Real delta)

Helper function to numerically determine tangent, intended for testing, rather than as a replacement for
analytical tangents

template<Dim_t DimM>
inline Eigen::Matrix<Real, DimM, DimM> compute_deviatoric_stress(const Eigen::Matrix<Real,

DimM, DimM> &PK2)
Computes the deviatoric stress _{dev}=-{1}{3} tr()*I, on each pixel from a given stress, first only for PK2.

template<Dim_t DimM>
inline decltype(auto) compute_equivalent_von_Mises_stress(const Eigen::Map<const

Eigen::Matrix<Real, DimM, DimM>>
PK2)

Computes the equivalent von Mises stress _{eq} on each pixel from a given PK2 stress.

template<Formulation Form, class Material, class Strains, class Stresses>
void constitutive_law(Material &mat, Strains &&strains, Stresses &stresses, const size_t &quad_pt_id,

const Real &ratio)

template<Formulation Form, class Material, class Strains, class Stresses>
void constitutive_law(Material &mat, Strains &&strains, Stresses &stresses, const size_t &quad_pt_id)

template<Formulation Form, class Material, class Strains, class Stresses>
void constitutive_law_tangent(Material &mat, Strains &&strains, Stresses &stresses, const size_t

&quad_pt_id)

template<Formulation Form, class Material, class Strains, class Stresses>
void constitutive_law_tangent(Material &mat, Strains &&strains, Stresses &stresses, const size_t

&quad_pt_id, const Real &ratio)

template<Dim_t DimM, class Derived1, class Derived2>
void make_C_from_C_voigt(const Eigen::MatrixBase<Derived1> &C_voigt, Eigen::MatrixBase<Derived2>

&C_holder)

template<StressMeasure StressM, StrainMeasure StrainM, class Stress_t, class Strain_t>
decltype(auto) PK1_stress(Strain_t &&strain, Stress_t &&stress)

set of functions returning an expression for PK1 stress based on

template<StressMeasure StressM, StrainMeasure StrainM, class Stress_t, class Strain_t, class
Tangent_t>
decltype(auto) PK1_stress(Strain_t &&strain, Stress_t &&stress, Tangent_t &&tangent)

set of functions returning an expression for PK1 stress based on

template<StressMeasure StressM, StrainMeasure StrainM, class Stress_t, class Strain_t>

323

µSpectre Documentation, Release v0.1

decltype(auto) PK2_stress(Strain_t &&strain, Stress_t &&stress)
set of functions returning an expression for PK2 stress based on

template<StressMeasure StressM, StrainMeasure StrainM, class Stress_t, class Strain_t, class
Tangent_t>
decltype(auto) PK2_stress(Strain_t &&strain, Stress_t &&stress, Tangent_t &&tangent)

set of functions returning an expression for PK2 stress based on

template<StressMeasure StressM, StrainMeasure StrainM, class Stress_t, class Strain_t>
decltype(auto) Kirchhoff_stress(Strain_t &&strain, Stress_t &&stress)

set of functions returning an expression for Kirchhoff stress based on

namespace internal

namespace std_replacement

Functions

template<class F, class ...ArgTypes>
auto invoke(F &&f, ArgTypes&&... args) noexcept(noexcept(detail::INVOKE(std::forward<F>(f),

std::forward<ArgTypes>(args)...))) -> decltype(detail::INVOKE(std::forward<F>(f),
std::forward<ArgTypes>(args)...))

from cppreference

template<class F, class Tuple>
decltype(auto) constexpr apply(F &&f, Tuple &&t)

from cppreference

namespace detail

Functions

template<class Base, class T, class Derived, class ...Args>
auto INVOKE(T Base::* pmf, Derived &&ref, Args&&... args)

noexcept(noexcept((std::forward<Derived>(ref) .* pmf)(std::forward<Args>(args)...))) ->
std::enable_if_t<std::is_function<T>::value && std::is_base_of<Base,
std::decay_t<Derived>>::value, decltype((std::forward<Derived>(ref) .*
pmf)(std::forward<Args>(args)...))>

from cppreference

template<class Base, class T, class RefWrap, class ...Args>
auto INVOKE(T Base::* pmf, RefWrap &&ref, Args&&... args) noexcept(noexcept((ref .get() .*

pmf)(std::forward<Args>(args)...))) -> std::enable_if_t<std::is_function<T>::value &&
is_reference_wrapper<std::decay_t<RefWrap>>::value, decltype((ref .get() .*
pmf)(std::forward<Args>(args)...))>

from cppreference

template<class Base, class T, class Pointer, class ...Args>

324 Chapter 7. Reference

µSpectre Documentation, Release v0.1

auto INVOKE(T Base::* pmf, Pointer &&ptr, Args&&... args)
noexcept(noexcept(((*std::forward<Pointer>(ptr)) .* pmf)(std::forward<Args>(args)...))) ->
std::enable_if_t<std::is_function<T>::value &&
!is_reference_wrapper<std::decay_t<Pointer>>::value && !std::is_base_of<Base,
std::decay_t<Pointer>>::value, decltype(((*std::forward<Pointer>(ptr)) .*
pmf)(std::forward<Args>(args)...))>

from cppreference

template<class Base, class T, class Derived>
auto INVOKE(T Base::* pmd, Derived &&ref) noexcept(noexcept(std::forward<Derived>(ref) .* pmd)) ->

std::enable_if_t<!std::is_function<T>::value && std::is_base_of<Base,
std::decay_t<Derived>>::value, decltype(std::forward<Derived>(ref) .* pmd)>

from cppreference

template<class Base, class T, class RefWrap>
auto INVOKE(T Base::* pmd, RefWrap &&ref) noexcept(noexcept(ref .get() .* pmd)) ->

std::enable_if_t<!std::is_function<T>::value &&
is_reference_wrapper<std::decay_t<RefWrap>>::value, decltype(ref .get() .* pmd)>

from cppreference

template<class Base, class T, class Pointer>
auto INVOKE(T Base::* pmd, Pointer &&ptr) noexcept(noexcept((*std::forward<Pointer>(ptr)) .* pmd)) ->

std::enable_if_t<!std::is_function<T>::value &&
!is_reference_wrapper<std::decay_t<Pointer>>::value && !std::is_base_of<Base,
std::decay_t<Pointer>>::value, decltype((*std::forward<Pointer>(ptr)) .* pmd)>

from cppreference

template<class F, class ...Args>
auto INVOKE(F &&f, Args&&... args) noexcept(noexcept(std::forward<F>(f)(std::forward<Args>(args)...)))

-> std::enable_if_t<!std::is_member_pointer<std::decay_t<F>>::value,
decltype(std::forward<F>(f)(std::forward<Args>(args)...))>

from cppreference

template<class F, class Tuple, std::size_t... I>
decltype(auto) constexpr apply_impl(F &&f, Tuple &&t, std::index_sequence<I ...>)

from cppreference

file cell.cc
#include “cell_adaptor.hh”#include “cell.hh”#include <libmugrid/field_map.hh>#include <libmu-
grid/field_map_static.hh>#include <set> implementation for the Cell class

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
05 Oct 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

325

mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell.hh
#include “common/muSpectre_common.hh”#include “materials/material_base.hh”#include “projec-
tion/projection_base.hh”#include <libmugrid/ccoord_operations.hh>#include <memory> Class for the
representation of a homogenisation problem in µSpectre.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
13 Sep 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell_adaptor.hh
#include <common/muSpectre_common.hh>#include <Eigen/IterativeLinearSolvers> Cell Adaptor imple-
ments the matrix-vector multiplication and allows the adapted cell to be used like a spacse matrix in conjugate-
gradient-type solvers.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
13 Sep 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

326 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell_factory.hh
#include “common/muSpectre_common.hh”#include “cell/cell.hh”#include “projec-
tion/projection_finite_strain_fast.hh”#include “projection/projection_small_strain.hh”#include <libmu-
grid/ccoord_operations.hh>#include <libmufft/derivative.hh>#include <libmufft/fftw_engine.hh>#include
<memory> Cell factories to help create cells with ease.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell_split.cc
#include “cell/cell_split.hh” Implementation for cell base class.

Copyright © 2017 Till Junge

Author
Ali Falsafi ali.faslafi@epfl.ch

Date
10 Dec 2019

327

mailto:till.junge@epfl.ch
mailto:ali.faslafi@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell_split.hh
#include “cell/cell.hh”#include “common/muSpectre_common.hh”#include “com-
mon/intersection_octree.hh”#include “materials/material_base.hh”#include “projec-
tion/projection_base.hh”#include “libmugrid/ccoord_operations.hh”#include “libmugrid/field.hh”#include
<vector>#include <memory>#include <tuple>#include <functional>#include <sstream>#include <algo-
rithm> Base class representing a unit cell able to handle split material assignments.

Copyright © 2017 Till Junge

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
10 Dec 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell_split_factory.hh
#include “common/muSpectre_common.hh”#include “libmugrid/ccoord_operations.hh”#include
“cell/cell_split.hh”#include “projection/projection_finite_strain_fast.hh”#include “projec-
tion/projection_small_strain.hh”#include “libmufft/fftw_engine.hh”#include “cell/cell_factory.hh”#include
<memory> Implementation for cell base class.

328 Chapter 7. Reference

mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

Copyright © 2017 Till Junge

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
01 Nov 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cell_traits.hh
#include “common/muSpectre_common.hh”#include <Eigen/IterativeLinearSolvers> Provides traits for Eigen
solvers to be able to use Cells.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
19 Jan 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file common.cc
#include “common/muSpectre_common.hh”#include <stdexcept>#include <iostream> Implementation for
common functions.

329

mailto:ali.falsafi@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 Nov 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file geometry.hh
#include “common/muSpectre_common.hh”#include <libmugrid/tensor_algebra.hh>#include <libmu-
grid/eigen_tools.hh>#include <Eigen/Dense>#include <Eigen/Geometry>#include <array>#include <mem-
ory> Geometric calculation helpers.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
18 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

330 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

file intersection_octree.cc
#include “common/intersection_octree.hh” Oct tree for obtaining and calculating the intersection with pixels.

Copyright © 2018 Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
May 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file intersection_octree.hh
#include “common/muSpectre_common.hh”#include “cell/cell.hh”#include “materi-
als/material_base.hh”#include “common/intersection_volume_calculator_corkpp.hh”#include “libmu-
grid/ccoord_operations.hh”#include <vector>#include <array>#include <algorithm> octree algorithm
employed to accelerate precipitate pixel assignment

Copyright © 2018 Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
May 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

331

mailto:ali.falsafi@epfl.ch
mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file intersection_volume_calculator_corkpp.hh
#include “cork_interface.hh”#include “libmugrid/grid_common.hh”#include <vector>#include
<fstream>#include <math.h> Calculation of the intersection volume of percipitates and pixles.

Copyright © 2018 Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
04 June 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file muSpectre_common.hh
#include <libmugrid/grid_common.hh>#include <libmugrid/tensor_algebra.hh>#include <lib-
mufft/mufft_common.hh>#include <string> Small definitions of commonly used types throughout µSpectre.

Author
Till Junge till.junge@epfl.ch

Date
01 May 2017

7.1 LICENSE

Copyright © 2017 Till Junge

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

332 Chapter 7. Reference

mailto:ali.falsafi@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file voigt_conversion.cc
#include “common/voigt_conversion.hh” specializations for static members of voigt converter

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
04 May 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file voigt_conversion.hh
#include “common/muSpectre_common.hh”#include <Eigen/Dense>#include <unsup-
ported/Eigen/CXX11/Tensor>#include <iostream> utilities to transform vector notation arrays into voigt
notation arrays and vice-versa

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

7.1. LICENSE 333

mailto:till.junge@epfl.ch
mailto:ali.falsafi@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Date
02 May 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file communicator.cc
#include “communicator.hh”#include <sstream> implementation for mpi abstraction layer

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
02 Oct 2019

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file communicator.hh
#include <type_traits>#include “mufft_common.hh”#include <Eigen/Dense> abstraction layer for the dis-
tributed memory communicator object

Copyright © 2017 Till Junge

Author
Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

334 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:lars.pastewka@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

Date
07 Mar 2018

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file derivative.cc
#include <iostream>#include “derivative.hh”

file derivative.cc
#include “projection/derivative.hh”

file derivative.hh
#include <memory>#include “common/muSpectre_common.hh”#include <libmugrid/ccoord_operations.hh>
Representation of finite-differences stencils.

Copyright © 2019 Lars Pastewka

Author
Richard Leute richard.leute@imtek.uni-freiburg.de Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
05 June 2019

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

7.1. LICENSE 335

mailto:richard.leute@imtek.uni-freiburg.de
mailto:lars.pastewka@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

file fft_engine_base.cc
#include “fft_engine_base.hh”#include “fft_utils.hh” implementation for FFT engine base class

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
03 Dec 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file fft_engine_base.hh
#include <libmugrid/ccoord_operations.hh>#include <libmugrid/field_collection_global.hh>#include <lib-
mugrid/field_typed.hh>#include “communicator.hh”#include “mufft_common.hh” Interface for FFT engines.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
01 Dec 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

336 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

file fft_utils.cc
#include “fft_utils.hh” implementation of fft utilities

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
11 Dec 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file fft_utils.hh
#include “mufft_common.hh”#include <Eigen/Dense>#include <array>#include <valarray> collection of
functions used in the context of spectral operations

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
06 Dec 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

7.1. LICENSE 337

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

file fftw_engine.cc
#include <sstream>#include “fftw_engine.hh”#include <libmugrid/ccoord_operations.hh> implements the
fftw engine

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
03 Dec 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file fftw_engine.hh
#include “fft_engine_base.hh”#include <fftw3.h> FFT engine using FFTW.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
03 Dec 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

338 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

file fftwmpi_engine.cc
#include “fftwmpi_engine.hh”#include <libmugrid/ccoord_operations.hh> implements the MPI-parallel fftw
engine

Copyright © 2017 Till Junge

Author
Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
06 Mar 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file fftwmpi_engine.hh
#include “fft_engine_base.hh”#include <fftw3-mpi.h> FFT engine using MPI-parallel FFTW.

Copyright © 2017 Till Junge

Author
Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
06 Mar 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

7.1. LICENSE 339

mailto:lars.pastewka@imtek.uni-freiburg.de
mailto:lars.pastewka@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

file mufft_common.hh
#include <libmugrid/grid_common.hh> Small definitions of commonly used types throughout µFFT.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Jan 2019

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file pfft_engine.cc
#include “pfft_engine.hh”#include <libmugrid/ccoord_operations.hh> implements the MPI-parallel pfft engine

Copyright © 2017 Till Junge

Author
Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
06 Mar 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

340 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:lars.pastewka@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

file pfft_engine.hh
#include “fft_engine_base.hh”#include <pfft.h> FFT engine using MPI-parallel PFFT.

Copyright © 2017 Till Junge

Author
Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
06 Mar 2017

µFFT is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µFFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µFFT; see the file COPY-
ING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file ccoord_operations.cc
#include <iostream>#include “ccoord_operations.hh” pre-compilable pixel operations

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
01 Oct 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

7.1. LICENSE 341

mailto:lars.pastewka@imtek.uni-freiburg.de
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

file ccoord_operations.hh
#include <functional>#include <numeric>#include <utility>#include <Eigen/Dense>#include
“grid_common.hh”#include “iterators.hh” common operations on pixel addressing

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
29 Sep 2017

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file cpp_compliance.hh
#include <tuple>#include <experimental/optional> additions to the standard name space to anticipate C++17
features

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
17 Nov 2017

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

342 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file eigen_tools.hh
#include “grid_common.hh”#include <Eigen/Dense>#include <unsupported/Eigen/CXX11/Tensor>#include
<type_traits>#include <utility> small tools to be used with Eigen

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
20 Sep 2017

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field.cc
#include “field.hh”#include “field_collection.hh”#include “field_collection_global.hh” implementation of
Field

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
11 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

7.1. LICENSE 343

mailto:till.junge@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field.hh
#include “grid_common.hh”#include <string>#include <typeinfo> Base class for fields.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
10 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_collection.cc
#include “field_collection.hh”#include “field.hh”#include “state_field.hh”#include “field_typed.hh” Imple-
mentations for field collections.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
11 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

344 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_collection.hh
#include “grid_common.hh”#include <map>#include <string>#include <memory>#include
<sstream>#include <stdexcept>#include <vector> Base class for field collections.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
10 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_collection_global.cc
#include “field_collection_global.hh”#include <iostream> Implementation of GlobalFieldCollection.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
11 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

7.1. LICENSE 345

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_collection_global.hh
#include “field_collection.hh”#include “ccoord_operations.hh” Global field collections.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
11 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_collection_local.cc
#include “field_collection_local.hh” implementation of local field collection

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
12 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

346 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_collection_local.hh
#include “field_collection.hh”#include “field_collection_global.hh” Local field collection.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
12 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_map.cc
#include “field_map.hh”#include “field_typed.hh”#include “field_collection.hh”#include “itera-
tors.hh”#include <sstream>#include <iostream> Implementation for basic FieldMap.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

7.1. LICENSE 347

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_map.hh
#include “grid_common.hh”#include “iterators.hh”#include “field_collection.hh”#include
<type_traits>#include <memory>#include <functional> Implementation of the base class of all field
maps.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_map_static.hh
#include “field.hh”#include “field_typed.hh”#include “field_map.hh”#include “T4_map_proxy.hh”#include
<sstream> header-only implementation of field maps with statically known iterate sizes

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
20 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

348 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_typed.cc
#include <sstream>#include “field_typed.hh”#include “field_collection.hh”#include “field_map.hh” Imple-
mentation for typed fields.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
13 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file field_typed.hh
#include “field.hh”#include “grid_common.hh”#include <Eigen/Dense>#include <vector>#include <mem-
ory> Field classes for which the scalar type has been defined.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
10 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

7.1. LICENSE 349

mailto:till.junge@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file grid_common.hh
#include <Eigen/Dense>#include <array>#include <cmath>#include <complex>#include
<type_traits>#include <initializer_list>#include <algorithm>#include <vector>#include
“cpp_compliance.hh” Small definitions of commonly used types throughout µgrid.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Jan 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file iterators.hh
#include <tuple>#include <utility> iterator interfaces

Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory (LSMS - Laboratoire
de Simulation en Mécanique des Solides)

Author
Nicolas Richart

Date
creation Wed Jul 19 2017

Akantu is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

Akantu is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

350 Chapter 7. Reference

mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with Akantu. If not, see
http://www.gnu.org/licenses/.

Above block was left intact as in akantu. µGrid exercises the right to redistribute and modify the code below

file mapped_field.hh
#include “field_map_static.hh”#include “field_collection.hh”#include “field_typed.hh”#include <string> con-
venience class to deal with data structures common to most internal variable fields in materials

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
04 Sep 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file mapped_state_field.hh
#include “state_field_map_static.hh”#include “state_field.hh”#include “field_collection.hh” Convenience
class extending the mapped field concept to state fields.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
09 Sep 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

7.1. LICENSE 351

http://www.gnu.org/licenses/
mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file numpy_tools.hh
#include <algorithm>#include <pybind11/numpy.h>#include “field_typed.hh”#include
“field_collection_global.hh” Convenience function for working with (pybind11’s) numpy arrays.

Copyright © 2018 Lars Pastewka, Till Junge

Author
Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Author
Till Junge till.junge@epfl.ch

Date
02 Dec 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file ref_array.hh
#include <array>#include <initializer_list>#include “iterators.hh” convenience class to simulate an array of
references

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
04 Dec 2018

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

352 Chapter 7. Reference

mailto:lars.pastewka@imtek.uni-freiburg.de
mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file ref_vector.hh
#include <vector> convenience class providing a vector of references

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
21 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file state_field.cc
#include “state_field.hh”#include “field.hh”#include “field_typed.hh”#include “field_collection.hh”#include
<sstream> implementation for state fields

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
20 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

7.1. LICENSE 353

mailto:till.junge@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file state_field.hh
#include “grid_common.hh”#include “ref_vector.hh”#include “state_field_map.hh”#include
<string>#include <vector>#include <utility> A state field is an abstraction of a field that can hold cur-
rent, as well as a chosen number of previous values. This is useful for instance for internal state variables in
plastic laws, where a current, new, or trial state is computed based on its previous state, and at convergence, this
new state gets cycled into the old, the old into the old-1 etc. The state field abstraction helps doing this safely
(i.e. only const references to the old states are available, while the current state can be assigned to/modified),
and efficiently (i.e., no need to copy values from new to old, we just cycle the labels). This file implements the
state field as well as state maps using the Field, FieldCollection and FieldMap abstractions of µGrid.

Copyright © 2019 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
20 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file state_field_map.cc
#include “state_field_map.hh”#include “state_field.hh”#include “field_map.hh”#include
“field_typed.hh”#include “field_collection.hh”#include “field.hh” implementation of state field maps

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
22 Aug 2019

354 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file state_field_map.hh
#include “grid_common.hh”#include “field_map.hh”#include “ref_vector.hh”#include <vector>#include
<memory> implementation of state field maps

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
22 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file state_field_map_static.hh
#include “state_field_map.hh”#include “field_map_static.hh”#include “field_typed.hh”#include <ar-
ray>#include <sstream>#include <utility> header-only implementation of state field maps with statically
known iterate sizes

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

7.1. LICENSE 355

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Date
27 Aug 2019

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file T4_map_proxy.hh
#include “eigen_tools.hh”#include <Eigen/Dense>#include <Eigen/src/Core/util/Constants.h>#include
<type_traits> Map type to allow fourth-order tensor-like maps on 2D matrices.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
19 Nov 2017

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file tensor_algebra.hh
#include “grid_common.hh”#include “T4_map_proxy.hh”#include “eigen_tools.hh”#include
<Eigen/Dense>#include <unsupported/Eigen/CXX11/Tensor>#include <type_traits> collection of compile-
time quantities and algrebraic functions for tensor operations

Copyright © 2017 Till Junge

356 Chapter 7. Reference

mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Author
Till Junge till.junge@epfl.ch

Date
05 Nov 2017

µGrid is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µGrid is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µGrid; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file iterable_proxy.hh
#include “common/muSpectre_common.hh” transitional class for iterating over materials and their strain and
stress fields

Copyright © 2019 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
08 Nov 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file laminate_homogenisation.cc
#include “laminate_homogenisation.hh” : Implementation of functions of internal laminate solver used in Ma-
terialLaminate

7.1. LICENSE 357

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Copyright © 2017 Till Junge, Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
28 Sep 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file laminate_homogenisation.hh
#include “common/geometry.hh”#include “common/muSpectre_common.hh”#include “libmu-
grid/field_map.hh”#include “material_linear_anisotropic.hh”#include “materials_toolbox.hh”#include
“material_muSpectre_base.hh”#include <tuple> Laminatehomogenisation enables one to obtain the resulting
stress and stiffness tensors of a laminate pixel that is consisted of two materialswith a certain normal vector of
their interface plane. note that it is supposed to be used in static way. so it does note any data member. It is
merely a collection of functions used to calculate effective stress and stiffness.

Copyright © 2017 Till Junge, Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
28 Sep 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

358 Chapter 7. Reference

mailto:ali.falsafi@epfl.ch
mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

file material_base.cc
#include “materials/material_base.hh”#include <libmugrid/field.hh>#include <libmugrid/field_typed.hh> im-
plementation of material

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
01 Nov 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_base.hh
#include “common/muSpectre_common.hh”#include “materials/materials_toolbox.hh”#include
<libmugrid/field_collection_local.hh>#include <libmugrid/field_typed.hh>#include <libmu-
grid/mapped_field.hh>#include <string>#include <tuple> Base class for materials (constitutive models)

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
25 Oct 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

7.1. LICENSE 359

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_evaluator.hh
#include “common/muSpectre_common.hh”#include “materials/materials_toolbox.hh”#include
<libmugrid/T4_map_proxy.hh>#include <libmugrid/ccoord_operations.hh>#include <libmu-
grid/mapped_field.hh>#include <exception>#include <memory>#include <sstream> Helper to evaluate
material laws.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
12 Dec 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_hyper_elasto_plastic1.cc
#include “common/muSpectre_common.hh”#include “materials/stress_transformations_Kirchhoff.hh”#include
“materials/material_hyper_elasto_plastic1.hh”#include <libmugrid/T4_map_proxy.hh> implementation for
MaterialHyperElastoPlastic1

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
21 Feb 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

360 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_hyper_elasto_plastic1.hh
#include “materials/material_muSpectre_base.hh”#include “materials/materials_toolbox.hh”#include
<libmugrid/eigen_tools.hh>#include <libmugrid/mapped_field.hh>#include <libmu-
grid/mapped_state_field.hh>#include <algorithm> Material for logarithmic hyperelasto-plasticity, as
defined in de Geus 2017 (https://doi.org/10.1016/j.cma.2016.12.032) and further explained in Geers 2003
(https://doi.org/10.1016/j.cma.2003.07.014)

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
20 Feb 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_hyper_elasto_plastic2.cc
#include “common/muSpectre_common.hh”#include “materials/stress_transformations_Kirchhoff.hh”#include
“materials/material_hyper_elasto_plastic2.hh”#include <libmugrid/T4_map_proxy.hh> copy of mate-
rial_hyper_elasto_plastic1 with Young, Poisson, yield criterion and hardening modulus per pixel. As
defined in de Geus 2017 (https://doi.org/10.1016/j.cma.2016.12.032) and further explained in Geers 2003
(https://doi.org/10.1016/j.cma.2003.07.014).

Copyright © 2019 Till Junge

7.1. LICENSE 361

https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1016/j.cma.2003.07.014
mailto:till.junge@epfl.ch
https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1016/j.cma.2003.07.014

µSpectre Documentation, Release v0.1

Author
Richard Leute richard.leute@imtek.uni-freiburg.de

Date
08 Jul 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_hyper_elasto_plastic2.hh
#include “materials/material_muSpectre_base.hh”#include “materials/materials_toolbox.hh”#include <lib-
mugrid/eigen_tools.hh>#include <libmugrid/mapped_state_field.hh>#include <algorithm> copy of mate-
rial_hyper_elasto_plastic1 with Young, Poisson, yield criterion and hardening modulus per pixel. As de-
fined in de Geus 2017 (https://doi.org/10.1016/j.cma.2016.12.032) and further explained in Geers 2003 (https:
//doi.org/10.1016/j.cma.2003.07.014).

Copyright © 2019 Till Junge

Author
Richard Leute richard.leute@imtek.uni-freiburg.de

Date
08 Jul 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_laminate.cc

362 Chapter 7. Reference

mailto:richard.leute@imtek.uni-freiburg.de
https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1016/j.cma.2003.07.014
https://doi.org/10.1016/j.cma.2003.07.014
mailto:richard.leute@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

#include “material_laminate.hh” material that uses laminae homogenisation

Copyright © 2018 Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Author
Till Junge till.junge@altermail.ch

Date
04 Jun 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_laminate.hh
#include “common/muSpectre_common.hh”#include “materials/material_muSpectre_base.hh”#include
“materials/materials_toolbox.hh”#include “materials/material_evaluator.hh”#include “materi-
als/laminate_homogenisation.hh”#include “common/intersection_octree.hh”#include “cell/cell.hh”#include
“libmugrid/T4_map_proxy.hh”#include <vector> material that uses laminae homogenisation

Copyright © 2018 Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Author
Till Junge till.junge@altermail.ch

Date
04 Jun 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

7.1. LICENSE 363

mailto:ali.falsafi@epfl.ch
mailto:till.junge@altermail.ch
mailto:ali.falsafi@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_anisotropic.cc
#include “material_linear_anisotropic.hh” Implementation of general anisotropic linear constitutive model.

Copyright © 2017 Till Junge

Author
Ali Falsafiali.falsafi@epfl.ch

Date
09 Jul 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_anisotropic.hh
#include “materials/stress_transformations_PK2.hh”#include “materials/material_base.hh”#include
“materials/material_muSpectre_base.hh”#include “materials/materials_toolbox.hh”#include
“common/muSpectre_common.hh”#include “common/voigt_conversion.hh”#include “libmu-
grid/T4_map_proxy.hh”#include “libmugrid/tensor_algebra.hh”#include “libmugrid/eigen_tools.hh”#include
“libmugrid/mapped_field.hh” defenition of general anisotropic linear constitutive model

Copyright © 2017 Till Junge

Author
Ali Falsafiali.falsafi@epfl.ch

Date
9 Jul 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

364 Chapter 7. Reference

mailto:ali.falsafi@epfl.ch
mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic1.cc
#include “materials/material_linear_elastic1.hh” Implementation for materiallinearelastic1.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
14 Nov 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic1.hh
#include “common/muSpectre_common.hh”#include “materials/stress_transformations_PK2.hh”#include
“materials/material_muSpectre_base.hh”#include “materials/materials_toolbox.hh”#include <libmu-
grid/field_map_static.hh> Implementation for linear elastic reference material like in de Geus.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
13 Nov 2017

7.1. LICENSE 365

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

2017. This follows the simplest and likely not most efficient
implementation (with exception of the Python law)

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic2.cc
#include “materials/material_linear_elastic2.hh” implementation for linear elastic material with eigenstrain

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
04 Feb 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic2.hh
#include “materials/material_linear_elastic1.hh”#include <libmugrid/mapped_field.hh>#include
<Eigen/Dense> linear elastic material with imposed eigenstrain and its type traits. Uses the MaterialMuSpectre
facilities to keep it simple

366 Chapter 7. Reference

mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
03 Feb 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic3.cc
#include “materials/material_linear_elastic3.hh” implementation for linear elastic material with distribution of
stiffness properties. Uses the MaterialMuSpectre facilities to keep it simple.

Copyright © 2018 Till Junge

Author
Richard Leute <richard.leute@imtek.uni-freiburg.de

Date
20 Feb 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

7.1. LICENSE 367

mailto:till.junge@altermail.ch
mailto:richard.leute@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

file material_linear_elastic3.hh
#include “materials/material_linear_elastic1.hh”#include <libmugrid/mapped_field.hh>#include
<Eigen/Dense> linear elastic material with distribution of stiffness properties. Uses the MaterialMuSpectre
facilities to keep it simple.

Copyright © 2018 Till Junge

Author
Richard Leute richard.leute@imtek.uni-freiburg.de

Date
20 Feb 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic4.cc
#include “material_linear_elastic4.hh” linear elastic material with distribution of stiffness properties. In differ-
ence to material_linear_elastic3 two Lame constants are stored per pixel instead of the whole elastic matrix C.
Uses the MaterialMuSpectre facilities to keep it simple.

Copyright © 2018 Till Junge

Author
Richard Leute <richard.leute@imtek.uni-freiburg.de

Date
15 March 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

368 Chapter 7. Reference

mailto:richard.leute@imtek.uni-freiburg.de
mailto:richard.leute@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic4.hh
#include “materials/material_linear_elastic1.hh”#include “libmugrid/mapped_field.hh”#include
<Eigen/Dense> linear elastic material with distribution of stiffness properties. In difference to mate-
rial_linear_elastic3 two Lame constants are stored per pixel instead of the whole elastic matrix C. Uses the
MaterialMuSpectre facilities to keep it simple.

Copyright © 2018 Till Junge

Author
Richard Leute richard.leute@imtek.uni-freiburg.de

Date
15 March 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic_generic1.cc
#include “materials/material_linear_elastic_generic1.hh”#include “common/voigt_conversion.hh” implemen-
tation for MaterialLinearElasticGeneric

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
21 Sep 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

7.1. LICENSE 369

mailto:richard.leute@imtek.uni-freiburg.de
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic_generic1.hh
#include “common/muSpectre_common.hh”#include “materials/stress_transformations_PK2.hh”#include
“materials/material_muSpectre_base.hh”#include <libmugrid/T4_map_proxy.hh>#include <libmu-
grid/field_map_static.hh>#include <memory> Implementation fo a generic linear elastic material that
stores the full elastic stiffness tensor. Convenient but not the most efficient.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
21 Sep 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic_generic2.cc
#include “material_linear_elastic_generic2.hh” Implementation for generic linear elastic law with eigenstrains.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
20 Dec 2018

370 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_elastic_generic2.hh
#include “material_linear_elastic_generic1.hh”#include “libmugrid/mapped_field.hh” implementation of a
generic linear elastic law with eigenstrains

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
20 Dec 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_orthotropic.cc
#include “material_base.hh”#include “common/muSpectre_common.hh”#include “mate-
rial_linear_anisotropic.hh”#include “material_linear_orthotropic.hh” Implementation of general orthotropic
linear constitutive model.

Copyright © 2017 Till Junge

Author
Ali Falsafiali.falsafi@epfl.ch

7.1. LICENSE 371

mailto:till.junge@epfl.ch
mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

Date
11 Jul 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_linear_orthotropic.hh
#include “stress_transformations_PK2.hh”#include “material_base.hh”#include “ma-
terial_muSpectre_base.hh”#include “material_linear_anisotropic.hh”#include “com-
mon/muSpectre_common.hh”#include “cell/cell.hh”#include “libmugrid/field_map_static.hh” defenition
of general orthotropic linear constitutive model

Copyright © 2017 Till Junge

Author
Ali Falsafiali.falsafi@epfl.ch

Date
11 Jul 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_muSpectre_base.hh
#include “common/muSpectre_common.hh”#include “materials/material_base.hh”#include
“materials/materials_toolbox.hh”#include “materials/material_evaluator.hh”#include “materi-
als/iterable_proxy.hh”#include “cell/cell.hh”#include “libmugrid/field_map_static.hh”#include <tu-
ple>#include <type_traits>#include <iterator>#include <stdexcept>#include <functional>#include <util-

372 Chapter 7. Reference

mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

ity>#include “sstream” Base class for materials written for µSpectre specifically. These can take full advantage
of the configuration-change utilities of µSpectre. The user can inherit from them to define new constitutive laws
and is merely required to provide the methods for computing the second Piola-Kirchhoff stress and Tangent.
This class uses the “curiously recurring template parameter” to avoid virtual calls.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
25 Oct 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_stochastic_plasticity.cc
#include “materials/material_stochastic_plasticity.hh”#include <sstream>

material for stochastic plasticity as described in Z. Budrikis et al. Nature Comm. 8:15928, 2017. It only works
together with “python

-script”, which performes the avalanche loop. This makes the material slower but more easy to modify and test.
(copied from material_linear_elastic4.cc)

Copyright © 2019 Till Junge

Author
Richard Leute richard.leute@imtek.uni-freiburg.de

Date
24 Jan 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

7.1. LICENSE 373

mailto:till.junge@epfl.ch
mailto:richard.leute@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file material_stochastic_plasticity.hh
#include “common/muSpectre_common.hh”#include “materials/material_linear_elastic1.hh”#include
“cell/cell.hh”#include <libmugrid/mapped_field.hh>

material for stochastic plasticity as described in Z. Budrikis et al. Nature Comm. 8:15928, 2017. It only works
together with “python

-script”, which performes the avalanche loop. This makes the material slower but more easy to modify and test.
(copied from material_linear_elastic4.hh)

Copyright © 2019 Till Junge

Author
Richard Leute richard.leute@imtek.uni-freiburg.de

Date
24 Jan 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file materials_toolbox.hh
#include “common/muSpectre_common.hh”#include “materials/stress_transformations_PK1.hh”#include
“common/voigt_conversion.hh”#include <libmugrid/eigen_tools.hh>#include <libmu-
grid/T4_map_proxy.hh>#include <libmugrid/tensor_algebra.hh>#include <Eigen/Dense>#include <un-
supported/Eigen/MatrixFunctions>#include <exception>#include <sstream>#include <iostream>#include
<tuple>#include <type_traits> collection of common continuum mechanics tools

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

374 Chapter 7. Reference

mailto:richard.leute@imtek.uni-freiburg.de
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Date
02 Nov 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file s_t_material_linear_elastic_generic1.cc
#include “materials/s_t_material_linear_elastic_generic1.hh” the implemenation of the methods of the class
STMateriallinearelasticgeneric1

Copyright © 2020 Ali Falsafi

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
20 Jan 2020

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file s_t_material_linear_elastic_generic1.hh
#include “materials/material_linear_elastic_generic1.hh”#include “materials/stress_transformations_PK1.hh”#include
“materials/stress_transformations_Kirchhoff.hh” Material that is merely used to behave as an intermediate
convertor for enablling us to conduct tests on stress_transformation usogn MaterialLinearelasticgeneric1.

Copyright © 2020 Ali Falsafi

7.1. LICENSE 375

mailto:ali.falsafi@epfl.ch

µSpectre Documentation, Release v0.1

Author
Ali Falsafi ali.falsafi@epfl.ch

Date
20 Jan 2020

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations.hh
#include “common/muSpectre_common.hh”#include <libmugrid/eigen_tools.hh> isolation of stress conver-
sions for quicker compilation

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_default_case.hh
#include “common/muSpectre_common.hh”#include <libmugrid/T4_map_proxy.hh> default structure for
stress conversions

376 Chapter 7. Reference

mailto:ali.falsafi@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_Kirchhoff.hh
#include “materials/stress_transformations_default_case.hh”#include “materi-
als/stress_transformations_Kirchhoff_impl.hh”#include “stress_transformations.hh” Stress conversions
for Kirchhoff stress ()

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_Kirchhoff_impl.hh

7.1. LICENSE 377

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Implementation of stress conversions for Kirchhoff stress.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_PK1.hh
#include “materials/stress_transformations_default_case.hh”#include “materi-
als/stress_transformations_PK1_impl.hh”#include “materials/stress_transformations.hh” stress conversion for
PK1 stress

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

378 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_PK1_impl.hh
#include “common/muSpectre_common.hh”#include <libmugrid/T4_map_proxy.hh> implementation of stress
conversion for PK1 stress

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_PK2.hh
#include “materials/stress_transformations_default_case.hh”#include “materi-
als/stress_transformations_PK2_impl.hh”#include “materials/stress_transformations.hh” stress conversions for
PK2 stress

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

7.1. LICENSE 379

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file stress_transformations_PK2_impl.hh
#include “common/muSpectre_common.hh”#include <libmugrid/T4_map_proxy.hh> Implementation of stress
conversions for PK2 stress.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
29 Oct 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_base.cc
#include <sstream>#include “projection/projection_base.hh” implementation of base class for projections

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
06 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

380 Chapter 7. Reference

mailto:till.junge@altermail.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_base.hh
#include <libmugrid/field_collection.hh>#include <libmugrid/field_typed.hh>#include <lib-
mufft/fft_engine_base.hh>#include “common/muSpectre_common.hh”#include <memory> Base class
for Projection operators.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
03 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_default.cc
#include “projection/projection_default.hh”#include <libmufft/fft_engine_base.hh> Implementation default
projection implementation.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
14 Jan 2018

7.1. LICENSE 381

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_default.hh
#include <libmugrid/field_map_static.hh>#include <libmufft/derivative.hh>#include “projec-
tion/projection_base.hh” virtual base class for default projection implementation, where the projection
operator is stored as a full fourth-order tensor per k-space point (as opposed to ‘smart’ faster implementations,
such as ProjectionFiniteStrainFast

Copyright (C) 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
14 Jan 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_finite_strain.cc
#include “projection/projection_finite_strain.hh”#include <libmugrid/iterators.hh>#include <lib-
mufft/fft_utils.hh>#include <libmufft/fftw_engine.hh>#include “Eigen/Dense” implementation of the
finite strain projection operator

Copyright © 2017 Till Junge

382 Chapter 7. Reference

mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Author
Till Junge till.junge@altermail.ch Richard Leute richard.leute@imtek.uni-freiburg.de Lars Pastewka
lars.pastewka@imtek.uni-freiburg.de

Date
05 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_finite_strain.hh
#include “projection/projection_default.hh” Class for discrete finite-strain gradient projections.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch Richard Leute richard.leute@imtek.uni-freiburg.de Lars Pastewka
lars.pastewka@imtek.uni-freiburg.de

Date
16 Apr 2019

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_finite_strain_fast.cc
#include “projection/projection_finite_strain_fast.hh”#include <libmufft/fft_utils.hh>#include <libmu-
grid/iterators.hh> implementation for fast projection in finite strain

7.1. LICENSE 383

mailto:till.junge@altermail.ch
mailto:richard.leute@imtek.uni-freiburg.de
mailto:lars.pastewka@imtek.uni-freiburg.de
mailto:till.junge@altermail.ch
mailto:richard.leute@imtek.uni-freiburg.de
mailto:lars.pastewka@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
12 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_finite_strain_fast.hh
#include <libmugrid/field_collection.hh>#include <libmugrid/field_map_static.hh>#include <lib-
mufft/derivative.hh>#include “common/muSpectre_common.hh”#include “projection/projection_base.hh”
Faster alternative to ProjectionFinitestrain.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@epfl.ch Lars Pastewka lars.pastewka@imtek.uni-freiburg.de

Date
12 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

384 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:lars.pastewka@imtek.uni-freiburg.de
mailto:till.junge@epfl.ch
mailto:lars.pastewka@imtek.uni-freiburg.de

µSpectre Documentation, Release v0.1

file projection_small_strain.cc
#include “projection/projection_small_strain.hh”#include <libmufft/fft_utils.hh> Implementation for Projec-
tionSmallStrain.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
14 Jan 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file projection_small_strain.hh
#include “projection/projection_default.hh”

Small strain projection operator as defined in Appendix A1 of DOI: 10.1002/nme.5481 (“A finite element per-
spective on nonlinear

FFT-based micromechanical simulations”, Int. J. Numer. Meth. Engng 2017; 111 :903–926)

Copyright © 2018 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
14 Jan 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-
1307, USA.

7.1. LICENSE 385

mailto:till.junge@altermail.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_base.cc
#include “solver/solver_base.hh” implementation of SolverBase

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_base.hh
#include “solver/solver_common.hh”#include “cell/cell.hh”#include <Eigen/Dense> Base class for iterative
solvers for linear systems of equations.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

386 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_cg.cc
#include “solver/solver_cg.hh”#include “cell/cell_adaptor.hh”#include <libmufft/communicator.hh>#include
<iomanip>#include <sstream>#include <iostream> implements SolverCG

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_cg.hh
#include “solver/solver_base.hh” class fo a simple implementation of a conjugate gradient solver. This follows
algorithm 5.2 in Nocedal’s Numerical Optimization (p 112)

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

7.1. LICENSE 387

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_common.cc
#include “solver/solver_common.hh” implementation for solver utilities

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 May 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_common.hh
#include “common/muSpectre_common.hh”#include <Eigen/Dense>#include <stdexcept> Errors raised by
solvers and other common utilities.

Copyright © 2017 Till Junge

Author
Till Junge till.junge@altermail.ch

Date
28 Dec 2017

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

388 Chapter 7. Reference

mailto:till.junge@epfl.ch
mailto:till.junge@altermail.ch

µSpectre Documentation, Release v0.1

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_eigen.cc
#include “solver/solver_eigen.hh”#include <iomanip>#include <sstream> Implementations for bindings to
Eigen’s iterative solvers.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 May 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solver_eigen.hh
#include “solver/solver_base.hh”#include “cell/cell.hh”#include “cell/cell_adaptor.hh”#include
<Eigen/IterativeLinearSolvers>#include <iostream>#include <unsupported/Eigen/IterativeSolvers> Bindings
to Eigen’s iterative solvers.

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
15 May 2018

7.1. LICENSE 389

mailto:till.junge@epfl.ch
mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solvers.cc
#include “solver/solvers.hh”#include <libmugrid/iterators.hh>#include <libmu-
grid/mapped_field.hh>#include <Eigen/Dense>#include <iomanip>#include <iostream> implementation of
dynamic newton-cg solver

Copyright © 2018 Till Junge

Author
Till Junge till.junge@epfl.ch

Date
24 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

file solvers.hh
#include “solver/solver_base.hh”#include <Eigen/Dense>#include <vector>#include <string> Free functions
for solving rve problems.

Copyright © 2018 Till Junge

390 Chapter 7. Reference

mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

Author
Till Junge till.junge@epfl.ch

Date
24 Apr 2018

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3, or (at your option) any later
version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

• Boston, MA 02111-1307, USA.

Additional permission under GNU GPL version 3 section 7

If you modify this Program, or any covered work, by linking or combining it with proprietary FFT implemen-
tations or numerical libraries, containing parts covered by the terms of those libraries’ licenses, the licensors of
this Program grant you additional permission to convey the resulting work.

group Coordinates

Typedefs

using Ccoord_t = std::array<Dim_t, Dim>
Ccoord_t are cell coordinates, i.e. integer coordinates.

using Rcoord_t = std::array<Real, Dim>
Real space coordinates.

using DynCcoord_t = DynCcoord<threeD>
usually, we should not need omre than three dimensions

using DynRcoord_t = DynCcoord<threeD, Real>
usually, we should not need omre than three dimensions

dir /home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/cell

dir /home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/common

dir
/home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/libmufft

dir
/home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/libmugrid

7.1. LICENSE 391

mailto:till.junge@epfl.ch

µSpectre Documentation, Release v0.1

dir
/home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/materials

dir /home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/
projection

dir /home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src/solver

dir /home/docs/checkouts/readthedocs.org/user_builds/muspectre/checkouts/master/src

392 Chapter 7. Reference

CHAPTER

EIGHT

LICENSE

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You are not allowed to use µSpectre in commercial products.

8.1 GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by the additional permissions listed below.

8.1.1 0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL”
refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as
defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based
on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided
by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular
version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work,
excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application,
and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Ap-
plication, including any data and utility programs needed for reproducing the Combined Work from the Application,
but excluding the System Libraries of the Combined Work.

393

https://fsf.org/

µSpectre Documentation, Release v0.1

8.1.2 1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU
GPL.

8.1.3 2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied
by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may
convey a copy of the modified version:

• a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does
not supply the function or data, the facility still operates, and performs whatever part of its purpose remains
meaningful, or

• b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

8.1.4 3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the Library. You
may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to
numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do both of the following:

• a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and
its use are covered by this License.

• b) Accompany the object code with a copy of the GNU GPL and this license document.

8.1.5 4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modi-
fication of the portions of the Library contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

• a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library
and its use are covered by this License.

• b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

• c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the
Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this
license document.

• d) Do one of the following: - 0) Convey the Minimal Corresponding Source under the terms of

this License, and the Corresponding Application Code in a form suitable for, and under terms that
permit, the user to recombine or relink the Application with a modified version of the Linked Version
to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for
conveying Corresponding Source.

– 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that
(a) uses at run time a copy of the Library already present on the user’s computer system, and (b) will operate
properly with a modified version of the Library that is interface-compatible with the Linked Version.

394 Chapter 8. License

µSpectre Documentation, Release v0.1

• e) Provide Installation Information, but only if you would otherwise be required to provide such information
under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute
a modified version of the Combined Work produced by recombining or relinking the Application with a mod-
ified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the
Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide
the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

8.1.6 5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library together with other
library facilities that are not Applications and are not covered by this License, and convey such a combined library
under terms of your choice, if you do both of the following:

• a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any
other library facilities, conveyed under the terms of this License.

• b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8.1.7 6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered
version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of follow-
ing the terms and conditions either of that published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public
License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software
Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General
Public License shall apply, that proxy’s public statement of acceptance of any version is permanent authorization for
you to choose that version for the Library.

8.2 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change
the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change
all versions of a program–to make sure it remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

8.2. GNU GENERAL PUBLIC LICENSE 395

https://fsf.org/

µSpectre Documentation, Release v0.1

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights.
Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities
to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients
the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer
you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software.
For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems
will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although
the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change
the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice
for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to
those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict develop-
ment and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that
patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents
cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS

8.2.1 0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”.
“Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work
“based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily
liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy.
Propagation includes copying, distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction
with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and promi-
nently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty
for the work (except to the extent that warranties are provided), that licensees may convey the work under this License,

396 Chapter 8. License

µSpectre Documentation, Release v0.1

and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

8.2.2 1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code”
means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body,
or, in the case of interfaces specified for a particular programming language, one that is widely used among developers
working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in
the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to
enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install,
and (for an executable work) run the object code and to modify the work, including scripts to control those activities.
However, it does not include the work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the
Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

8.2.3 2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided
the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program.
The output from running a covered work is covered by this License only if the output, given its content, constitutes a
covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license
otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modi-
fications exclusively for you, or provide you with facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not
allowed; section 10 makes it unnecessary.

8.2. GNU GENERAL PUBLIC LICENSE 397

µSpectre Documentation, Release v0.1

8.2.4 3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obli-
gations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the
extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you
disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

8.2.5 4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating
that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection
for a fee.

8.2.6 5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of
source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions added
under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy.
This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work,
and all its parts, regardless of how they are packaged. This License gives no permission to license the work in
any other way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program
has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions
of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage
or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other parts of the aggregate.

8.2.7 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey
the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), ac-
companied by the Corresponding Source fixed on a durable physical medium customarily used for software
interchange.

398 Chapter 8. License

µSpectre Documentation, Release v0.1

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accom-
panied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer
support for that product model, to give anyone who possesses the object code either (1) a copy of the Corre-
sponding Source for all the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source.
This alternative is allowed only occasionally and noncommercially, and only if you received the object code with
such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way through the same place at no further charge. You need not
require recipients to copy the Corresponding Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying
where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code
and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System
Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally
used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling.
In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, “normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information
required to install and execute modified versions of a covered work in that User Product from a modified version of its
Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the
conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to
the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support
service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in
which it has been modified or installed. Access to a network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format
that is publicly documented (and with an implementation available to the public in source code form), and must require
no special password or key for unpacking, reading or copying.

8.2. GNU GENERAL PUBLIC LICENSE 399

µSpectre Documentation, Release v0.1

8.2.8 7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more
of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were
included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to
part of the Program, that part may be used separately under those permissions, but the entire Program remains governed
by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy,
or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you
modify the work.) You may place additional permissions on material, added by you to a covered work, for which you
have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by
the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Ap-
propriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material
be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or
modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these
contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If
the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with
a term that is a further restriction, you may remove that term. If a license document contains a further restriction but
permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement
of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as
exceptions; the above requirements apply either way.

8.2.9 8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt other-
wise to propagate or modify it is void, and will automatically terminate your rights under this License (including any
patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

400 Chapter 8. License

µSpectre Documentation, Release v0.1

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not
qualify to receive new licenses for the same material under section 10.

8.2.10 9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a
covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not
require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

8.2.11 10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run,
modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third
parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or sub-
dividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction,
each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s
predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License,
and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

8.2.12 11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the
Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already
acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using,
or selling its contributor version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential
patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its
contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated,
not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement).
To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not
available for anyone to copy, free of charge and under the terms of this License, through a publicly available network
server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly

8.2. GNU GENERAL PUBLIC LICENSE 401

µSpectre Documentation, Release v0.1

relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country,
or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country
that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring con-
veyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing
them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of,
or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License.
You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a
discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from
those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement
that may otherwise be available to you under applicable patent law.

8.2.13 12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

8.2.14 13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a
work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey
the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network
will apply to the combination as such.

8.2.15 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of
the GNU General Public License “or any later version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for
the Program.

402 Chapter 8. License

µSpectre Documentation, Release v0.1

Later license versions may give you additional or different permissions. However, no additional obligations are imposed
on any author or copyright holder as a result of your choosing to follow a later version.

8.2.16 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

8.2.17 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8.2.18 17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to
their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability
in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in
return for a fee.

END OF TERMS AND CONDITIONS

µSpectre is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

µSpectre is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along with µSpectre; see the file COPYING.
If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

8.2. GNU GENERAL PUBLIC LICENSE 403

µSpectre Documentation, Release v0.1

404 Chapter 8. License

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

405

µSpectre Documentation, Release v0.1

406 Chapter 9. Indices and tables

INDEX

A
akantu (C++ type), 294
akantu::arange (C++ function), 295
akantu::containers (C++ type), 295
akantu::containers::ArangeContainer (C++

class), 101
akantu::containers::ArangeContainer::ArangeContainer

(C++ function), 101
akantu::containers::ArangeContainer::begin

(C++ function), 101
akantu::containers::ArangeContainer::end

(C++ function), 101
akantu::containers::ArangeContainer::iterator

(C++ type), 101
akantu::containers::ArangeContainer::operator[]

(C++ function), 101
akantu::containers::ArangeContainer::size

(C++ function), 101
akantu::containers::ArangeContainer::start

(C++ member), 102
akantu::containers::ArangeContainer::step

(C++ member), 102
akantu::containers::ArangeContainer::stop

(C++ member), 102
akantu::containers::ZipContainer (C++ class),

293
akantu::containers::ZipContainer::begin

(C++ function), 293
akantu::containers::ZipContainer::containers

(C++ member), 294
akantu::containers::ZipContainer::containers_t

(C++ type), 294
akantu::containers::ZipContainer::end (C++

function), 293
akantu::containers::ZipContainer::ZipContainer

(C++ function), 293
akantu::enumerate (C++ function), 295
akantu::iterators (C++ type), 295
akantu::iterators::ArangeIterator (C++ class),

102
akantu::iterators::ArangeIterator::ArangeIterator

(C++ function), 102

akantu::iterators::ArangeIterator::iterator_category
(C++ type), 102

akantu::iterators::ArangeIterator::operator!=
(C++ function), 102

akantu::iterators::ArangeIterator::operator*
(C++ function), 102

akantu::iterators::ArangeIterator::operator++
(C++ function), 102

akantu::iterators::ArangeIterator::operator==
(C++ function), 102

akantu::iterators::ArangeIterator::pointer
(C++ type), 102

akantu::iterators::ArangeIterator::reference
(C++ type), 102

akantu::iterators::ArangeIterator::step
(C++ member), 103

akantu::iterators::ArangeIterator::value
(C++ member), 103

akantu::iterators::ArangeIterator::value_type
(C++ type), 102

akantu::iterators::ZipIterator (C++ class), 294
akantu::iterators::ZipIterator::iterators

(C++ member), 294
akantu::iterators::ZipIterator::operator!=

(C++ function), 294
akantu::iterators::ZipIterator::operator*

(C++ function), 294
akantu::iterators::ZipIterator::operator++

(C++ function), 294
akantu::iterators::ZipIterator::operator==

(C++ function), 294
akantu::iterators::ZipIterator::tuple_t

(C++ type), 294
akantu::iterators::ZipIterator::ZipIterator

(C++ function), 294
akantu::tuple (C++ type), 295
akantu::tuple::are_not_equal (C++ function), 295
akantu::tuple::details (C++ type), 295
akantu::tuple::details::Foreach (C++ struct),

145
akantu::tuple::details::Foreach::not_equal

(C++ function), 145

407

µSpectre Documentation, Release v0.1

akantu::tuple::details::foreach_impl (C++
function), 296

akantu::tuple::details::Foreach<0> (C++
struct), 145

akantu::tuple::details::Foreach<0>::not_equal
(C++ function), 145

akantu::tuple::details::make_tuple_no_decay
(C++ function), 296

akantu::tuple::details::transform_impl (C++
function), 296

akantu::tuple::foreach_ (C++ function), 295
akantu::tuple::transform (C++ function), 295
akantu::zip (C++ function), 295
akantu::zip_iterator (C++ function), 295

C
Ccoord_t (C++ type), 84, 391

D
DynCcoord_t (C++ type), 84, 391
DynRcoord_t (C++ type), 84, 391

E
eigen (C++ function), 84
Eigen (C++ type), 296
Eigen::internal (C++ type), 296
Eigen::internal::Dim_t (C++ type), 296
Eigen::internal::generic_product_impl<CellAdaptor,

Rhs, SparseShape, DenseShape,
GemvProduct> (C++ struct), 146

Eigen::internal::generic_product_impl<CellAdaptor,
Rhs, SparseShape, DenseShape,
GemvProduct>::Scalar (C++ type), 146

Eigen::internal::generic_product_impl<CellAdaptor,
Rhs, SparseShape, DenseShape,
GemvProduct>::scaleAndAddTo (C++
function), 147

Eigen::internal::Real (C++ type), 296
Eigen::internal::traits<muSpectre::CellAdaptor<Cell>>

(C++ struct), 280

M
muFFT (C++ type), 296
muFFT::Communicator (C++ class), 110
muFFT::Communicator::~Communicator (C++ func-

tion), 111
muFFT::Communicator::Communicator (C++ func-

tion), 111
muFFT::Communicator::gather (C++ function), 111
muFFT::Communicator::has_mpi (C++ function), 111
muFFT::Communicator::rank (C++ function), 111
muFFT::Communicator::size (C++ function), 111
muFFT::Communicator::sum (C++ function), 111

muFFT::Communicator::sum_mat (C++ function), 111
muFFT::Derivative_ptr (C++ type), 296
muFFT::DerivativeBase (C++ class), 116
muFFT::DerivativeBase::~DerivativeBase (C++

function), 116
muFFT::DerivativeBase::DerivativeBase (C++

function), 116
muFFT::DerivativeBase::fourier (C++ function),

116
muFFT::DerivativeBase::operator= (C++ func-

tion), 116
muFFT::DerivativeBase::spatial_dimension

(C++ member), 117
muFFT::DerivativeBase::Vector (C++ type), 116
muFFT::DerivativeError (C++ class), 117
muFFT::DerivativeError::DerivativeError

(C++ function), 117
muFFT::DiscreteDerivative (C++ class), 117
muFFT::DiscreteDerivative::~DiscreteDerivative

(C++ function), 118
muFFT::DiscreteDerivative::DiscreteDerivative

(C++ function), 118
muFFT::DiscreteDerivative::fourier (C++ func-

tion), 118
muFFT::DiscreteDerivative::get_lbounds (C++

function), 118
muFFT::DiscreteDerivative::get_nb_pts (C++

function), 118
muFFT::DiscreteDerivative::lbounds (C++ mem-

ber), 119
muFFT::DiscreteDerivative::nb_pts (C++ mem-

ber), 119
muFFT::DiscreteDerivative::operator() (C++

function), 118
muFFT::DiscreteDerivative::operator= (C++

function), 118
muFFT::DiscreteDerivative::Parent (C++ type),

118
muFFT::DiscreteDerivative::rollaxes (C++

function), 118
muFFT::DiscreteDerivative::stencil (C++ mem-

ber), 119
muFFT::DiscreteDerivative::Vector (C++ type),

118
muFFT::fft_freq (C++ function), 297, 298
muFFT::FFT_freqs (C++ class), 126
muFFT::fft_freqs (C++ function), 297, 298
muFFT::FFT_freqs::~FFT_freqs (C++ function), 127
muFFT::FFT_freqs::CcoordVector (C++ type), 126
muFFT::FFT_freqs::FFT_freqs (C++ function), 127
muFFT::FFT_freqs::freqs (C++ member), 127
muFFT::FFT_freqs::get_complex_xi (C++ func-

tion), 127
muFFT::FFT_freqs::get_nb_grid_pts (C++ func-

408 Index

µSpectre Documentation, Release v0.1

tion), 127
muFFT::FFT_freqs::get_unit_xi (C++ function),

127
muFFT::FFT_freqs::get_xi (C++ function), 127
muFFT::FFT_freqs::operator= (C++ function), 127
muFFT::FFT_freqs::Vector (C++ type), 126
muFFT::FFT_freqs::VectorComplex (C++ type), 126
muFFT::FFT_PlanFlags (C++ enum), 297
muFFT::FFT_PlanFlags::estimate (C++ enumera-

tor), 297
muFFT::FFT_PlanFlags::measure (C++ enumera-

tor), 297
muFFT::FFT_PlanFlags::patient (C++ enumera-

tor), 297
muFFT::FFTEngine_ptr (C++ type), 296
muFFT::FFTEngineBase (C++ class), 127
muFFT::FFTEngineBase::~FFTEngineBase (C++

function), 128
muFFT::FFTEngineBase::comm (C++ member), 130
muFFT::FFTEngineBase::fft (C++ function), 128
muFFT::FFTEngineBase::FFTEngineBase (C++

function), 128
muFFT::FFTEngineBase::Field_t (C++ type), 128
muFFT::FFTEngineBase::fourier_locations

(C++ member), 130
muFFT::FFTEngineBase::fourier_size (C++ func-

tion), 129
muFFT::FFTEngineBase::get_communicator (C++

function), 129
muFFT::FFTEngineBase::get_dim (C++ function),

129
muFFT::FFTEngineBase::get_field_collection

(C++ function), 129
muFFT::FFTEngineBase::get_fourier_locations

(C++ function), 129
muFFT::FFTEngineBase::get_nb_dof_per_pixel

(C++ function), 129
muFFT::FFTEngineBase::get_nb_domain_grid_pts

(C++ function), 129
muFFT::FFTEngineBase::get_nb_fourier_grid_pts

(C++ function), 129
muFFT::FFTEngineBase::get_nb_quad (C++ func-

tion), 129
muFFT::FFTEngineBase::get_nb_subdomain_grid_pts

(C++ function), 129
muFFT::FFTEngineBase::get_pixels (C++ func-

tion), 129
muFFT::FFTEngineBase::get_subdomain_locations

(C++ function), 129
muFFT::FFTEngineBase::get_work_space (C++

function), 129
muFFT::FFTEngineBase::GFieldCollection_t

(C++ type), 128
muFFT::FFTEngineBase::ifft (C++ function), 128

muFFT::FFTEngineBase::initialise (C++ func-
tion), 128

muFFT::FFTEngineBase::initialised (C++ mem-
ber), 130

muFFT::FFTEngineBase::is_active (C++ function),
128

muFFT::FFTEngineBase::is_initialised (C++
function), 129

muFFT::FFTEngineBase::iterator (C++ type), 128
muFFT::FFTEngineBase::nb_dof_per_pixel (C++

member), 130
muFFT::FFTEngineBase::nb_domain_grid_pts

(C++ member), 130
muFFT::FFTEngineBase::nb_fourier_grid_pts

(C++ member), 130
muFFT::FFTEngineBase::nb_subdomain_grid_pts

(C++ member), 130
muFFT::FFTEngineBase::norm_factor (C++ mem-

ber), 130
muFFT::FFTEngineBase::normalisation (C++

function), 129
muFFT::FFTEngineBase::operator= (C++ function),

128
muFFT::FFTEngineBase::Pixels (C++ type), 128
muFFT::FFTEngineBase::size (C++ function), 129
muFFT::FFTEngineBase::spatial_dimension

(C++ member), 130
muFFT::FFTEngineBase::subdomain_locations

(C++ member), 130
muFFT::FFTEngineBase::work (C++ member), 130
muFFT::FFTEngineBase::work_space_container

(C++ member), 130
muFFT::FFTEngineBase::workspace_size (C++

function), 129
muFFT::FFTEngineBase::Workspace_t (C++ type),

128
muFFT::FFTWEngine (C++ class), 130
muFFT::FFTWEngine::~FFTWEngine (C++ function),

131
muFFT::FFTWEngine::fft (C++ function), 131
muFFT::FFTWEngine::FFTWEngine (C++ function),

131
muFFT::FFTWEngine::Field_t (C++ type), 131
muFFT::FFTWEngine::ifft (C++ function), 131
muFFT::FFTWEngine::initialise (C++ function),

131
muFFT::FFTWEngine::operator= (C++ function), 131
muFFT::FFTWEngine::Parent (C++ type), 131
muFFT::FFTWEngine::plan_fft (C++ member), 132
muFFT::FFTWEngine::plan_ifft (C++ member), 132
muFFT::FFTWEngine::Workspace_t (C++ type), 131
muFFT::FFTWMPIEngine (C++ class), 132
muFFT::FFTWMPIEngine::~FFTWMPIEngine (C++

function), 132

Index 409

µSpectre Documentation, Release v0.1

muFFT::FFTWMPIEngine::active (C++ member), 133
muFFT::FFTWMPIEngine::fft (C++ function), 132
muFFT::FFTWMPIEngine::FFTWMPIEngine (C++

function), 132
muFFT::FFTWMPIEngine::Field_t (C++ type), 132
muFFT::FFTWMPIEngine::ifft (C++ function), 133
muFFT::FFTWMPIEngine::initialise (C++ func-

tion), 132
muFFT::FFTWMPIEngine::is_active (C++ function),

133
muFFT::FFTWMPIEngine::nb_engines (C++ mem-

ber), 133
muFFT::FFTWMPIEngine::operator= (C++ function),

132
muFFT::FFTWMPIEngine::Parent (C++ type), 132
muFFT::FFTWMPIEngine::plan_fft (C++ member),

133
muFFT::FFTWMPIEngine::plan_ifft (C++ member),

133
muFFT::FFTWMPIEngine::real_workspace (C++

member), 133
muFFT::FFTWMPIEngine::workspace_size (C++

member), 133
muFFT::FFTWMPIEngine::Workspace_t (C++ type),

132
muFFT::FourierDerivative (C++ class), 145
muFFT::FourierDerivative::~FourierDerivative

(C++ function), 146
muFFT::FourierDerivative::direction (C++

member), 146
muFFT::FourierDerivative::fourier (C++ func-

tion), 146
muFFT::FourierDerivative::FourierDerivative

(C++ function), 146
muFFT::FourierDerivative::operator= (C++

function), 146
muFFT::FourierDerivative::Parent (C++ type),

145
muFFT::FourierDerivative::Vector (C++ type),

145
muFFT::get_nb_hermitian_grid_pts (C++ func-

tion), 297
muFFT::Gradient_t (C++ type), 296
muFFT::internal (C++ type), 298
muFFT::internal::herm (C++ function), 298
muFFT::make_fourier_gradient (C++ function), 297
muFFT::Matrix_t (C++ type), 296
muFFT::modulo (C++ function), 297
muFFT::operator<< (C++ function), 297
muFFT::PFFTEngine (C++ class), 226
muFFT::PFFTEngine::~PFFTEngine (C++ function),

226
muFFT::PFFTEngine::Ccoord (C++ type), 226
muFFT::PFFTEngine::fft (C++ function), 227

muFFT::PFFTEngine::Field_t (C++ type), 226
muFFT::PFFTEngine::ifft (C++ function), 227
muFFT::PFFTEngine::initialise (C++ function),

227
muFFT::PFFTEngine::mpi_comm (C++ member), 227
muFFT::PFFTEngine::nb_engines (C++ member),

227
muFFT::PFFTEngine::operator= (C++ function), 226
muFFT::PFFTEngine::Parent (C++ type), 226
muFFT::PFFTEngine::PFFTEngine (C++ function),

226
muFFT::PFFTEngine::plan_fft (C++ member), 227
muFFT::PFFTEngine::plan_ifft (C++ member), 227
muFFT::PFFTEngine::real_workspace (C++ mem-

ber), 227
muFFT::PFFTEngine::workspace_size (C++ mem-

ber), 227
muFFT::PFFTEngine::Workspace_t (C++ type), 226
muGrid (C++ type), 298
muGrid::ArrayFieldMap (C++ type), 299
muGrid::ArrayStateFieldMap (C++ type), 304
muGrid::call_sizes (C++ function), 306
muGrid::Ccoord_t (C++ type), 300
muGrid::CcoordOps (C++ type), 309
muGrid::CcoordOps::compute_pixel_volume

(C++ function), 309
muGrid::CcoordOps::compute_volume (C++ func-

tion), 309
muGrid::CcoordOps::DynamicPixels (C++ class),

120
muGrid::CcoordOps::DynamicPixels::~DynamicPixels

(C++ function), 120
muGrid::CcoordOps::DynamicPixels::begin

(C++ function), 121
muGrid::CcoordOps::DynamicPixels::dim (C++

member), 121
muGrid::CcoordOps::DynamicPixels::DynamicPixels

(C++ function), 120
muGrid::CcoordOps::DynamicPixels::end (C++

function), 121
muGrid::CcoordOps::DynamicPixels::enumerate

(C++ function), 121
muGrid::CcoordOps::DynamicPixels::Enumerator

(C++ class), 125
muGrid::CcoordOps::DynamicPixels::Enumerator::~Enumerator

(C++ function), 126
muGrid::CcoordOps::DynamicPixels::Enumerator::begin

(C++ function), 126
muGrid::CcoordOps::DynamicPixels::Enumerator::end

(C++ function), 126
muGrid::CcoordOps::DynamicPixels::Enumerator::Enumerator

(C++ function), 126
muGrid::CcoordOps::DynamicPixels::Enumerator::iterator

(C++ class), 161

410 Index

µSpectre Documentation, Release v0.1

muGrid::CcoordOps::DynamicPixels::Enumerator::iterator::operator*
(C++ function), 162

muGrid::CcoordOps::DynamicPixels::Enumerator::iterator::Parent
(C++ type), 162

muGrid::CcoordOps::DynamicPixels::Enumerator::operator=
(C++ function), 126

muGrid::CcoordOps::DynamicPixels::Enumerator::pixels
(C++ member), 126

muGrid::CcoordOps::DynamicPixels::Enumerator::size
(C++ function), 126

muGrid::CcoordOps::DynamicPixels::get_dim
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::get_dimensioned_pixels
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::get_index
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::get_locations
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::get_nb_grid_pts
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::get_strides
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::iterator
(C++ class), 160

muGrid::CcoordOps::DynamicPixels::iterator::~iterator
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::const_value_type
(C++ type), 160

muGrid::CcoordOps::DynamicPixels::iterator::difference_type
(C++ type), 160

muGrid::CcoordOps::DynamicPixels::iterator::index
(C++ member), 161

muGrid::CcoordOps::DynamicPixels::iterator::iterator
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::iterator_category
(C++ type), 160

muGrid::CcoordOps::DynamicPixels::iterator::operator!=
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::operator*
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::operator++
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::operator=
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::operator==
(C++ function), 161

muGrid::CcoordOps::DynamicPixels::iterator::pixels
(C++ member), 161

muGrid::CcoordOps::DynamicPixels::iterator::pointer
(C++ type), 160

muGrid::CcoordOps::DynamicPixels::iterator::value_type
(C++ type), 160

muGrid::CcoordOps::DynamicPixels::locations
(C++ member), 121

muGrid::CcoordOps::DynamicPixels::nb_grid_pts
(C++ member), 121

muGrid::CcoordOps::DynamicPixels::operator=
(C++ function), 121

muGrid::CcoordOps::DynamicPixels::size (C++
function), 121

muGrid::CcoordOps::DynamicPixels::strides
(C++ member), 122

muGrid::CcoordOps::get_ccoord (C++ function),
310

muGrid::CcoordOps::get_ccoord_from_strides
(C++ function), 310, 311

muGrid::CcoordOps::get_cube (C++ function), 309
muGrid::CcoordOps::get_default_strides (C++

function), 310
muGrid::CcoordOps::get_index (C++ function),

309, 311
muGrid::CcoordOps::get_index_from_strides

(C++ function), 311
muGrid::CcoordOps::get_size (C++ function), 311
muGrid::CcoordOps::get_size_from_strides

(C++ function), 311
muGrid::CcoordOps::get_vector (C++ function),

309, 310
muGrid::CcoordOps::internal (C++ type), 311
muGrid::CcoordOps::internal::compute_strides

(C++ function), 312
muGrid::CcoordOps::internal::cube_fun (C++

function), 311
muGrid::CcoordOps::internal::herm (C++ func-

tion), 311
muGrid::CcoordOps::internal::ret (C++ func-

tion), 311
muGrid::CcoordOps::internal::stride (C++

function), 312
muGrid::CcoordOps::Pixels (C++ class), 228
muGrid::CcoordOps::Pixels::~Pixels (C++ func-

tion), 229
muGrid::CcoordOps::Pixels::begin (C++ func-

tion), 229
muGrid::CcoordOps::Pixels::Ccoord (C++ type),

229
muGrid::CcoordOps::Pixels::end (C++ function),

229
muGrid::CcoordOps::Pixels::get_index (C++

function), 229
muGrid::CcoordOps::Pixels::get_location

(C++ function), 229
muGrid::CcoordOps::Pixels::get_nb_grid_pts

(C++ function), 229
muGrid::CcoordOps::Pixels::get_strides (C++

function), 229
muGrid::CcoordOps::Pixels::iterator (C++

class), 162

Index 411

µSpectre Documentation, Release v0.1

muGrid::CcoordOps::Pixels::iterator::~iterator
(C++ function), 162

muGrid::CcoordOps::Pixels::iterator::const_value_type
(C++ type), 162

muGrid::CcoordOps::Pixels::iterator::difference_type
(C++ type), 162

muGrid::CcoordOps::Pixels::iterator::index
(C++ member), 163

muGrid::CcoordOps::Pixels::iterator::iterator
(C++ function), 162

muGrid::CcoordOps::Pixels::iterator::iterator_category
(C++ type), 162

muGrid::CcoordOps::Pixels::iterator::operator!=
(C++ function), 162

muGrid::CcoordOps::Pixels::iterator::operator*
(C++ function), 162

muGrid::CcoordOps::Pixels::iterator::operator++
(C++ function), 162

muGrid::CcoordOps::Pixels::iterator::operator==
(C++ function), 162

muGrid::CcoordOps::Pixels::iterator::pixels
(C++ member), 163

muGrid::CcoordOps::Pixels::iterator::pointer
(C++ type), 162

muGrid::CcoordOps::Pixels::iterator::reference
(C++ type), 162

muGrid::CcoordOps::Pixels::iterator::value_type
(C++ type), 162

muGrid::CcoordOps::Pixels::operator= (C++
function), 229

muGrid::CcoordOps::Pixels::Parent (C++ type),
229

muGrid::CcoordOps::Pixels::Pixels (C++ func-
tion), 229

muGrid::CcoordOps::Pixels::size (C++ function),
229

muGrid::Complex (C++ type), 300
muGrid::ComplexField (C++ type), 300
muGrid::ComplexStateField (C++ type), 304
muGrid::ct_sqrt (C++ function), 306
muGrid::Decomp_t (C++ type), 298
muGrid::Dim_t (C++ type), 300
muGrid::DimCounter (C++ struct), 117
muGrid::DimCounter<Eigen::MatrixBase<Derived>>

(C++ struct), 117
muGrid::DimCounter<Eigen::MatrixBase<Derived>>::Rows

(C++ member), 117
muGrid::DimCounter<Eigen::MatrixBase<Derived>>::Type

(C++ type), 117
muGrid::DimCounter<Eigen::MatrixBase<Derived>>::value

(C++ member), 117
muGrid::DynCcoord (C++ class), 84, 122
muGrid::DynCcoord::~DynCcoord (C++ function),

85, 123

muGrid::DynCcoord::back (C++ function), 86, 124
muGrid::DynCcoord::begin (C++ function), 86, 123
muGrid::DynCcoord::const_iterator (C++ type),

85, 122
muGrid::DynCcoord::data (C++ function), 86, 124
muGrid::DynCcoord::dim (C++ member), 124
muGrid::DynCcoord::DynCcoord (C++ function), 85,

122
muGrid::DynCcoord::end (C++ function), 86, 123
muGrid::DynCcoord::fill_front (C++ function),

124
muGrid::DynCcoord::fill_front_helper (C++

function), 124
muGrid::DynCcoord::get (C++ function), 86, 123
muGrid::DynCcoord::get_dim (C++ function), 86,

123
muGrid::DynCcoord::iterator (C++ type), 85, 122
muGrid::DynCcoord::long_array (C++ member),

124
muGrid::DynCcoord::operator std::array<T,

Dim> (C++ function), 86, 123
muGrid::DynCcoord::operator/ (C++ function), 86,

123
muGrid::DynCcoord::operator= (C++ function), 85,

123
muGrid::DynCcoord::operator== (C++ function),

85, 123
muGrid::DynCcoord::operator[] (C++ function),

86, 123
muGrid::DynCcoord_t (C++ type), 301
muGrid::DynRcoord_t (C++ type), 301
muGrid::eigen (C++ function), 307
muGrid::EigenCheck (C++ type), 312
muGrid::EigenCheck::internal (C++ type), 312
muGrid::EigenCheck::internal::get_rank (C++

function), 312
muGrid::EigenCheck::is_fixed (C++ struct), 152
muGrid::EigenCheck::is_fixed::T (C++ type), 152
muGrid::EigenCheck::is_fixed::value (C++

member), 152
muGrid::EigenCheck::is_matrix (C++ struct), 152
muGrid::EigenCheck::is_matrix::T (C++ type),

152
muGrid::EigenCheck::is_matrix::value (C++

member), 152
muGrid::EigenCheck::is_matrix<Eigen::Map<Derived>>

(C++ struct), 152
muGrid::EigenCheck::is_matrix<Eigen::Map<Derived>>::value

(C++ member), 152
muGrid::EigenCheck::is_matrix<Eigen::Ref<Derived>>

(C++ struct), 152
muGrid::EigenCheck::is_matrix<Eigen::Ref<Derived>>::value

(C++ member), 153
muGrid::EigenCheck::is_square (C++ struct), 153

412 Index

µSpectre Documentation, Release v0.1

muGrid::EigenCheck::is_square::T (C++ type),
153

muGrid::EigenCheck::is_square::value (C++
member), 153

muGrid::EigenCheck::tensor_4_dim (C++ struct),
279

muGrid::EigenCheck::tensor_4_dim::T (C++
type), 279

muGrid::EigenCheck::tensor_4_dim::value
(C++ member), 279

muGrid::EigenCheck::tensor_dim (C++ struct),
279

muGrid::EigenCheck::tensor_dim::T (C++ type),
280

muGrid::EigenCheck::tensor_dim::value (C++
member), 280

muGrid::EigenCheck::tensor_rank (C++ struct),
280

muGrid::EigenCheck::tensor_rank::T (C++ type),
280

muGrid::EigenCheck::tensor_rank::value (C++
member), 280

muGrid::expm (C++ function), 307
muGrid::Field (C++ class), 133
muGrid::Field::~Field (C++ function), 134
muGrid::Field::buffer_size (C++ function), 134
muGrid::Field::collection (C++ member), 135
muGrid::Field::current_size (C++ member), 135
muGrid::Field::Field (C++ function), 134, 135
muGrid::Field::get_collection (C++ function),

134
muGrid::Field::get_components_shape (C++

function), 134
muGrid::Field::get_name (C++ function), 134
muGrid::Field::get_nb_components (C++ func-

tion), 134
muGrid::Field::get_pad_size (C++ function), 134
muGrid::Field::get_pixels_shape (C++ function),

134
muGrid::Field::get_shape (C++ function), 134
muGrid::Field::get_stored_typeid (C++ func-

tion), 134
muGrid::Field::get_stride (C++ function), 134
muGrid::Field::is_global (C++ function), 135
muGrid::Field::name (C++ member), 135
muGrid::Field::nb_components (C++ member), 135
muGrid::Field::operator= (C++ function), 134
muGrid::Field::pad_size (C++ member), 135
muGrid::Field::resize (C++ function), 135
muGrid::Field::set_pad_size (C++ function), 134
muGrid::Field::set_zero (C++ function), 134
muGrid::Field::size (C++ function), 134
muGrid::FieldCollection (C++ class), 135
muGrid::FieldCollection::~FieldCollection

(C++ function), 136
muGrid::FieldCollection::allocate_fields

(C++ function), 140
muGrid::FieldCollection::domain (C++ member),

140
muGrid::FieldCollection::field_exists (C++

function), 138
muGrid::FieldCollection::Field_ptr (C++ type),

136
muGrid::FieldCollection::FieldCollection

(C++ function), 136, 140
muGrid::FieldCollection::fields (C++ member),

140
muGrid::FieldCollection::get_domain (C++

function), 139
muGrid::FieldCollection::get_field (C++ func-

tion), 139
muGrid::FieldCollection::get_nb_entries

(C++ function), 138
muGrid::FieldCollection::get_nb_pixels (C++

function), 138
muGrid::FieldCollection::get_nb_quad (C++

function), 139
muGrid::FieldCollection::get_pixel_ids (C++

function), 139
muGrid::FieldCollection::get_pixel_indices

(C++ function), 139
muGrid::FieldCollection::get_pixel_indices_fast

(C++ function), 139
muGrid::FieldCollection::get_quad_pt_indices

(C++ function), 139
muGrid::FieldCollection::get_spatial_dim

(C++ function), 139
muGrid::FieldCollection::get_state_field

(C++ function), 139
muGrid::FieldCollection::has_nb_quad (C++

function), 138
muGrid::FieldCollection::IndexIterable (C++

class), 150
muGrid::FieldCollection::IndexIterable::~IndexIterable

(C++ function), 151
muGrid::FieldCollection::IndexIterable::begin

(C++ function), 151
muGrid::FieldCollection::IndexIterable::collection

(C++ member), 151
muGrid::FieldCollection::IndexIterable::end

(C++ function), 151
muGrid::FieldCollection::IndexIterable::get_stride

(C++ function), 151
muGrid::FieldCollection::IndexIterable::IndexIterable

(C++ function), 151
muGrid::FieldCollection::IndexIterable::iteration_type

(C++ member), 151
muGrid::FieldCollection::IndexIterable::iterator

Index 413

µSpectre Documentation, Release v0.1

(C++ class), 156
muGrid::FieldCollection::IndexIterable::iterator::~iterator

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::iterator

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::offset

(C++ member), 157
muGrid::FieldCollection::IndexIterable::iterator::operator!=

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::operator*

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::operator++

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::operator=

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::operator==

(C++ function), 157
muGrid::FieldCollection::IndexIterable::iterator::pixel_index_iterator

(C++ member), 157
muGrid::FieldCollection::IndexIterable::iterator::PixelIndexIterator_t

(C++ type), 157
muGrid::FieldCollection::IndexIterable::iterator::stride

(C++ member), 157
muGrid::FieldCollection::IndexIterable::operator=

(C++ function), 151
muGrid::FieldCollection::IndexIterable::size

(C++ function), 151
muGrid::FieldCollection::init_callbacks

(C++ member), 140
muGrid::FieldCollection::initialise_maps

(C++ function), 140
muGrid::FieldCollection::initialised (C++

member), 141
muGrid::FieldCollection::is_initialised

(C++ function), 139
muGrid::FieldCollection::list_fields (C++

function), 139
muGrid::FieldCollection::nb_entries (C++

member), 140
muGrid::FieldCollection::nb_quad_pts (C++

member), 140
muGrid::FieldCollection::operator= (C++ func-

tion), 136
muGrid::FieldCollection::pixel_indices (C++

member), 141
muGrid::FieldCollection::PixelIndexIterable

(C++ class), 227
muGrid::FieldCollection::PixelIndexIterable::~PixelIndexIterable

(C++ function), 228
muGrid::FieldCollection::PixelIndexIterable::begin

(C++ function), 228
muGrid::FieldCollection::PixelIndexIterable::collection

(C++ member), 228
muGrid::FieldCollection::PixelIndexIterable::end

(C++ function), 228
muGrid::FieldCollection::PixelIndexIterable::iterator

(C++ type), 227
muGrid::FieldCollection::PixelIndexIterable::operator=

(C++ function), 228
muGrid::FieldCollection::PixelIndexIterable::PixelIndexIterable

(C++ function), 228
muGrid::FieldCollection::PixelIndexIterable::size

(C++ function), 228
muGrid::FieldCollection::preregister_map

(C++ function), 139
muGrid::FieldCollection::QuadPtIndexIterable

(C++ type), 136
muGrid::FieldCollection::register_complex_field

(C++ function), 137
muGrid::FieldCollection::register_complex_state_field

(C++ function), 138
muGrid::FieldCollection::register_field

(C++ function), 136
muGrid::FieldCollection::register_field_helper

(C++ function), 140
muGrid::FieldCollection::register_int_field

(C++ function), 137
muGrid::FieldCollection::register_int_state_field

(C++ function), 138
muGrid::FieldCollection::register_real_field

(C++ function), 137
muGrid::FieldCollection::register_real_state_field

(C++ function), 137
muGrid::FieldCollection::register_state_field

(C++ function), 137
muGrid::FieldCollection::register_state_field_helper

(C++ function), 140
muGrid::FieldCollection::register_uint_field

(C++ function), 137
muGrid::FieldCollection::register_uint_state_field

(C++ function), 138
muGrid::FieldCollection::set_nb_quad (C++

function), 139
muGrid::FieldCollection::spatial_dim (C++

member), 140
muGrid::FieldCollection::state_field_exists

(C++ function), 138
muGrid::FieldCollection::state_fields (C++

member), 140
muGrid::FieldCollection::StateField_ptr

(C++ type), 136
muGrid::FieldCollection::ValidityDomain

(C++ enum), 136
muGrid::FieldCollection::ValidityDomain::Global

(C++ enumerator), 136
muGrid::FieldCollection::ValidityDomain::Local

(C++ enumerator), 136
muGrid::FieldCollectionError (C++ class), 141

414 Index

µSpectre Documentation, Release v0.1

muGrid::FieldCollectionError::FieldCollectionError
(C++ function), 141

muGrid::FieldDestructor (C++ struct), 141
muGrid::FieldDestructor::operator() (C++

function), 141
muGrid::FieldError (C++ class), 141
muGrid::FieldError::FieldError (C++ function),

141
muGrid::FieldMap (C++ class), 141
muGrid::FieldMap::~FieldMap (C++ function), 143
muGrid::FieldMap::begin (C++ function), 143
muGrid::FieldMap::callback (C++ member), 144
muGrid::FieldMap::cbegin (C++ function), 143
muGrid::FieldMap::cend (C++ function), 143
muGrid::FieldMap::const_iterator (C++ type),

142
muGrid::FieldMap::data_ptr (C++ member), 144
muGrid::FieldMap::EigenRef (C++ type), 142
muGrid::FieldMap::end (C++ function), 143
muGrid::FieldMap::enumerate_indices (C++

function), 144
muGrid::FieldMap::enumerate_pixel_indices_fast

(C++ function), 144
muGrid::FieldMap::Enumeration_t (C++ type), 142
muGrid::FieldMap::field (C++ member), 144
muGrid::FieldMap::Field_t (C++ type), 142
muGrid::FieldMap::FieldMap (C++ function), 143
muGrid::FieldMap::FieldMutability (C++ func-

tion), 144
muGrid::FieldMap::is_initialised (C++ mem-

ber), 144
muGrid::FieldMap::IsStatic (C++ function), 144
muGrid::FieldMap::iteration (C++ member), 144
muGrid::FieldMap::Iterator (C++ class), 157
muGrid::FieldMap::iterator (C++ type), 142
muGrid::FieldMap::Iterator::~Iterator (C++

function), 158
muGrid::FieldMap::Iterator::cvalue_type

(C++ type), 158
muGrid::FieldMap::Iterator::FieldMap_t (C++

type), 158
muGrid::FieldMap::Iterator::index (C++ mem-

ber), 159
muGrid::FieldMap::Iterator::Iterator (C++

function), 158
muGrid::FieldMap::Iterator::map (C++ member),

159
muGrid::FieldMap::Iterator::operator!= (C++

function), 158
muGrid::FieldMap::Iterator::operator* (C++

function), 158
muGrid::FieldMap::Iterator::operator++ (C++

function), 158
muGrid::FieldMap::Iterator::operator= (C++

function), 158
muGrid::FieldMap::Iterator::operator== (C++

function), 158
muGrid::FieldMap::Iterator::value_type (C++

type), 158
muGrid::FieldMap::mean (C++ function), 144
muGrid::FieldMap::nb_cols (C++ member), 144
muGrid::FieldMap::nb_rows (C++ member), 144
muGrid::FieldMap::operator= (C++ function), 143
muGrid::FieldMap::operator[] (C++ function),

143, 144
muGrid::FieldMap::PixelEnumeration_t (C++

type), 142
muGrid::FieldMap::PlainType (C++ type), 142
muGrid::FieldMap::Return_t (C++ type), 142
muGrid::FieldMap::Scalar (C++ type), 142
muGrid::FieldMap::set_data_ptr (C++ function),

144
muGrid::FieldMap::size (C++ function), 143
muGrid::FieldMap::stride (C++ member), 144
muGrid::FieldMapError (C++ class), 145
muGrid::FieldMapError::FieldMapError (C++

function), 145
muGrid::firstOrder (C++ member), 309
muGrid::fourthOrder (C++ member), 309
muGrid::get (C++ function), 308
muGrid::GlobalFieldCollection (C++ class), 147
muGrid::GlobalFieldCollection::~GlobalFieldCollection

(C++ function), 147
muGrid::GlobalFieldCollection::DynamicPixels

(C++ type), 147
muGrid::GlobalFieldCollection::get_ccoord

(C++ function), 148
muGrid::GlobalFieldCollection::get_empty_clone

(C++ function), 148
muGrid::GlobalFieldCollection::get_index

(C++ function), 148
muGrid::GlobalFieldCollection::get_pixels

(C++ function), 148
muGrid::GlobalFieldCollection::GlobalFieldCollection

(C++ function), 147
muGrid::GlobalFieldCollection::initialise

(C++ function), 148
muGrid::GlobalFieldCollection::operator=

(C++ function), 147
muGrid::GlobalFieldCollection::Parent (C++

type), 147
muGrid::GlobalFieldCollection::pixels (C++

member), 148
muGrid::Int (C++ type), 300
muGrid::internal (C++ type), 312
muGrid::internal::ArrayMap (C++ type), 312
muGrid::internal::CallSizesHelper (C++ struct),

103

Index 415

µSpectre Documentation, Release v0.1

muGrid::internal::CallSizesHelper::call
(C++ function), 103

muGrid::internal::CallSizesHelper<0, Fun_t,
dim, args...> (C++ struct), 103

muGrid::internal::CallSizesHelper<0, Fun_t,
dim, args...>::call (C++ function), 103

muGrid::internal::EigenMap (C++ struct), 124
muGrid::internal::EigenMap::from_data_ptr

(C++ function), 125
muGrid::internal::EigenMap::IsScalarMapType

(C++ function), 125
muGrid::internal::EigenMap::IsValidStaticMapType

(C++ function), 125
muGrid::internal::EigenMap::NbRow (C++ func-

tion), 125
muGrid::internal::EigenMap::PlainType (C++

type), 124
muGrid::internal::EigenMap::provide_const_ref

(C++ function), 125
muGrid::internal::EigenMap::provide_ptr

(C++ function), 125
muGrid::internal::EigenMap::provide_ref

(C++ function), 125
muGrid::internal::EigenMap::ref_type (C++

type), 124
muGrid::internal::EigenMap::Return_t (C++

type), 125
muGrid::internal::EigenMap::shape (C++ func-

tion), 125
muGrid::internal::EigenMap::storage_type

(C++ type), 125
muGrid::internal::EigenMap::stride (C++ func-

tion), 125
muGrid::internal::EigenMap::to_storage (C++

function), 125
muGrid::internal::EigenMap::value_type (C++

type), 124
muGrid::internal::MatrixMap (C++ type), 312
muGrid::internal::ScalarMap (C++ struct), 257
muGrid::internal::ScalarMap::from_data_ptr

(C++ function), 258
muGrid::internal::ScalarMap::IsScalarMapType

(C++ function), 257
muGrid::internal::ScalarMap::IsValidStaticMapType

(C++ function), 257
muGrid::internal::ScalarMap::NbRow (C++ func-

tion), 258
muGrid::internal::ScalarMap::PlainType (C++

type), 257
muGrid::internal::ScalarMap::provide_const_ref

(C++ function), 258
muGrid::internal::ScalarMap::provide_ptr

(C++ function), 258
muGrid::internal::ScalarMap::provide_ref

(C++ function), 257
muGrid::internal::ScalarMap::ref_type (C++

type), 257
muGrid::internal::ScalarMap::Return_t (C++

type), 257
muGrid::internal::ScalarMap::shape (C++ func-

tion), 258
muGrid::internal::ScalarMap::storage_type

(C++ type), 257
muGrid::internal::ScalarMap::stride (C++

function), 258
muGrid::internal::ScalarMap::to_storage

(C++ function), 258
muGrid::internal::ScalarMap::value_type

(C++ type), 257
muGrid::internal::SizesByOrderHelper (C++

struct), 258
muGrid::internal::SizesByOrderHelper::Sizes

(C++ type), 258
muGrid::internal::SizesByOrderHelper<0,

dim, dims...> (C++ struct), 258
muGrid::internal::SizesByOrderHelper<0,

dim, dims...>::Sizes (C++ type), 259
muGrid::internal::TypeChecker (C++ struct), 280,

281
muGrid::internal::TypeChecker::value (C++

member), 281
muGrid::IntField (C++ type), 300
muGrid::IntStateField (C++ type), 304
muGrid::ipow (C++ function), 308
muGrid::Iteration (C++ enum), 306
muGrid::Iteration::Pixel (C++ enumerator), 306
muGrid::Iteration::QuadPt (C++ enumerator), 306
muGrid::LocalFieldCollection (C++ class), 174
muGrid::LocalFieldCollection::~LocalFieldCollection

(C++ function), 174
muGrid::LocalFieldCollection::add_pixel

(C++ function), 175
muGrid::LocalFieldCollection::get_empty_clone

(C++ function), 175
muGrid::LocalFieldCollection::get_global_to_local_index_map

(C++ function), 175
muGrid::LocalFieldCollection::global_to_local_index_map

(C++ member), 175
muGrid::LocalFieldCollection::initialise

(C++ function), 175
muGrid::LocalFieldCollection::LocalFieldCollection

(C++ function), 174
muGrid::LocalFieldCollection::operator=

(C++ function), 175
muGrid::LocalFieldCollection::Parent (C++

type), 174
muGrid::log_comp (C++ type), 312
muGrid::log_comp::Mat_t (C++ type), 313

416 Index

µSpectre Documentation, Release v0.1

muGrid::log_comp::P (C++ function), 313
muGrid::log_comp::Proj (C++ struct), 235
muGrid::log_comp::Proj::compute (C++ function),

235
muGrid::log_comp::Proj<1, 0, 0> (C++ struct),

235
muGrid::log_comp::Proj<1, 0, 0>::compute

(C++ function), 235
muGrid::log_comp::Proj<1, 0, 0>::dim (C++

member), 235
muGrid::log_comp::Proj<1, 0, 0>::i (C++ mem-

ber), 235
muGrid::log_comp::Proj<1, 0, 0>::j (C++ mem-

ber), 235
muGrid::log_comp::Proj<dim, 0, 1> (C++ struct),

236
muGrid::log_comp::Proj<dim, 0, 1>::compute

(C++ function), 236
muGrid::log_comp::Proj<dim, 0, 1>::i (C++

member), 236
muGrid::log_comp::Proj<dim, 0, 1>::j (C++

member), 236
muGrid::log_comp::Proj<dim, i, 0> (C++ struct),

236
muGrid::log_comp::Proj<dim, i, 0>::compute

(C++ function), 236
muGrid::log_comp::Proj<dim, i, 0>::j (C++

member), 236
muGrid::log_comp::Proj<dim, other, other>

(C++ struct), 236
muGrid::log_comp::Proj<dim, other,

other>::compute (C++ function), 237
muGrid::log_comp::Sum (C++ function), 313
muGrid::log_comp::Summand (C++ struct), 278
muGrid::log_comp::Summand::compute (C++ func-

tion), 279
muGrid::log_comp::Summand<dim, 0> (C++ struct),

279
muGrid::log_comp::Summand<dim, 0>::compute

(C++ function), 279
muGrid::log_comp::Summand<dim, 0>::i (C++

member), 279
muGrid::log_comp::Vec_t (C++ type), 313
muGrid::logm (C++ function), 306
muGrid::logm_alt (C++ function), 307
muGrid::MappedArrayField (C++ type), 301
muGrid::MappedArrayStateField (C++ type), 302
muGrid::MappedField (C++ class), 175
muGrid::MappedField::~MappedField (C++ func-

tion), 176
muGrid::MappedField::begin (C++ function), 176
muGrid::MappedField::compute_nb_components_dynamic

(C++ function), 177
muGrid::MappedField::compute_nb_components_static

(C++ function), 177
muGrid::MappedField::const_iterator (C++

type), 175
muGrid::MappedField::end (C++ function), 176
muGrid::MappedField::field (C++ member), 177
muGrid::MappedField::get_field (C++ function),

176
muGrid::MappedField::get_map (C++ function), 176
muGrid::MappedField::IsStatic (C++ function),

177
muGrid::MappedField::iterator (C++ type), 175
muGrid::MappedField::map (C++ member), 177
muGrid::MappedField::MappedField (C++ func-

tion), 176
muGrid::MappedField::nb_components (C++ mem-

ber), 177
muGrid::MappedField::operator= (C++ function),

176
muGrid::MappedField::operator[] (C++ function),

176
muGrid::MappedField::Return_t (C++ type), 175
muGrid::MappedField::Scalar (C++ type), 175
muGrid::MappedMatrixField (C++ type), 301
muGrid::MappedMatrixStateField (C++ type), 302
muGrid::MappedScalarField (C++ type), 301
muGrid::MappedScalarStateField (C++ type), 303
muGrid::MappedStateField (C++ class), 177
muGrid::MappedStateField::~MappedStateField

(C++ function), 178
muGrid::MappedStateField::begin (C++ function),

178
muGrid::MappedStateField::compute_nb_components

(C++ function), 179
muGrid::MappedStateField::const_iterator

(C++ type), 178
muGrid::MappedStateField::end (C++ function),

178
muGrid::MappedStateField::get_map (C++ func-

tion), 178
muGrid::MappedStateField::get_state_field

(C++ function), 178
muGrid::MappedStateField::iterator (C++ type),

177
muGrid::MappedStateField::map (C++ member),

179
muGrid::MappedStateField::MappedStateField

(C++ function), 178
muGrid::MappedStateField::nb_components

(C++ member), 179
muGrid::MappedStateField::operator= (C++

function), 178
muGrid::MappedStateField::operator[] (C++

function), 178
muGrid::MappedStateField::Return_t (C++ type),

Index 417

µSpectre Documentation, Release v0.1

177
muGrid::MappedStateField::Scalar (C++ type),

177
muGrid::MappedStateField::state_field (C++

member), 179
muGrid::MappedT1Field (C++ type), 301
muGrid::MappedT1StateNField (C++ type), 303
muGrid::MappedT2Field (C++ type), 302
muGrid::MappedT2StateField (C++ type), 303
muGrid::MappedT4Field (C++ type), 302
muGrid::MappedT4StateField (C++ type), 304
muGrid::Mapping (C++ enum), 306
muGrid::Mapping::Const (C++ enumerator), 306
muGrid::Mapping::Mut (C++ enumerator), 306
muGrid::Matrices (C++ type), 313
muGrid::Matrices::ddot (C++ function), 314
muGrid::Matrices::dot (C++ function), 314
muGrid::Matrices::I2 (C++ function), 313
muGrid::Matrices::Iiden (C++ function), 314
muGrid::Matrices::internal (C++ type), 314
muGrid::Matrices::internal::Dotter (C++

struct), 119
muGrid::Matrices::internal::Dotter<Dim,

fourthOrder, fourthOrder> (C++ struct),
119

muGrid::Matrices::internal::Dotter<Dim,
fourthOrder, fourthOrder>::ddot (C++
function), 119

muGrid::Matrices::internal::Dotter<Dim,
fourthOrder, secondOrder> (C++ struct),
119

muGrid::Matrices::internal::Dotter<Dim,
fourthOrder, secondOrder>::dot (C++
function), 119

muGrid::Matrices::internal::Dotter<Dim,
secondOrder, fourthOrder> (C++ struct),
119

muGrid::Matrices::internal::Dotter<Dim,
secondOrder, fourthOrder>::dot (C++
function), 120

muGrid::Matrices::internal::Dotter<Dim,
secondOrder, secondOrder> (C++ struct),
120

muGrid::Matrices::internal::Dotter<Dim,
secondOrder, secondOrder>::ddot (C++
function), 120

muGrid::Matrices::Isymm (C++ function), 314
muGrid::Matrices::Itrac (C++ function), 314
muGrid::Matrices::Itrns (C++ function), 314
muGrid::Matrices::outer (C++ function), 313
muGrid::Matrices::outer_over (C++ function), 313
muGrid::Matrices::outer_under (C++ function),

313
muGrid::Matrices::Tens2_t (C++ type), 313

muGrid::Matrices::Tens4_t (C++ type), 313
muGrid::Matrices::tensmult (C++ function), 313
muGrid::Matrix_t (C++ type), 298
muGrid::MatrixFieldMap (C++ type), 298
muGrid::MatrixStateFieldMap (C++ type), 304
muGrid::numpy_copy (C++ function), 308
muGrid::numpy_wrap (C++ function), 308
muGrid::NumpyError (C++ class), 223
muGrid::NumpyError::NumpyError (C++ function),

223
muGrid::NumpyProxy (C++ class), 223
muGrid::NumpyProxy::collection (C++ member),

224
muGrid::NumpyProxy::components_shape (C++

member), 224
muGrid::NumpyProxy::field (C++ member), 224
muGrid::NumpyProxy::get_components_and_quad_pt_shape

(C++ function), 224
muGrid::NumpyProxy::get_components_shape

(C++ function), 224
muGrid::NumpyProxy::get_field (C++ function),

224
muGrid::NumpyProxy::NumpyProxy (C++ function),

224
muGrid::NumpyProxy::quad_pt_shape (C++ mem-

ber), 224
muGrid::oneD (C++ member), 308
muGrid::OneQuadPt (C++ member), 309
muGrid::operator/ (C++ function), 308
muGrid::operator<< (C++ function), 307, 308
muGrid::optional (C++ type), 298
muGrid::pi (C++ member), 309
muGrid::Rcoord_t (C++ type), 301
muGrid::Real (C++ type), 300
muGrid::RealField (C++ type), 300
muGrid::RealStateField (C++ type), 304
muGrid::RefArray (C++ class), 245
muGrid::RefArray::~RefArray (C++ function), 246
muGrid::RefArray::operator= (C++ function), 246
muGrid::RefArray::operator[] (C++ function), 246
muGrid::RefArray::RefArray (C++ function), 246
muGrid::RefArray::values (C++ member), 246
muGrid::RefVector (C++ class), 246
muGrid::RefVector::~RefVector (C++ function),

246
muGrid::RefVector::at (C++ function), 247
muGrid::RefVector::begin (C++ function), 247
muGrid::RefVector::end (C++ function), 247
muGrid::RefVector::iterator (C++ class), 163
muGrid::RefVector::iterator::iterator (C++

function), 163
muGrid::RefVector::iterator::operator* (C++

function), 163

418 Index

µSpectre Documentation, Release v0.1

muGrid::RefVector::iterator::Parent (C++
type), 163

muGrid::RefVector::operator= (C++ function),
246, 247

muGrid::RefVector::operator[] (C++ function),
247

muGrid::RefVector::Parent (C++ type), 247
muGrid::RefVector::push_back (C++ function), 247
muGrid::RefVector::RefVector (C++ function), 246
muGrid::ScalarFieldMap (C++ type), 299
muGrid::ScalarStateFieldMap (C++ type), 305
muGrid::secondOrder (C++ member), 309
muGrid::SizesByOrder (C++ struct), 258
muGrid::SizesByOrder::Sizes (C++ type), 258
muGrid::spectral_decomposition (C++ function),

307
muGrid::StateField (C++ class), 265
muGrid::StateField::~StateField (C++ function),

266
muGrid::StateField::collection (C++ member),

266
muGrid::StateField::current (C++ function), 266
muGrid::StateField::cycle (C++ function), 266
muGrid::StateField::fields (C++ member), 267
muGrid::StateField::get_indices (C++ function),

266
muGrid::StateField::get_nb_memory (C++ func-

tion), 266
muGrid::StateField::get_stored_typeid (C++

function), 266
muGrid::StateField::indices (C++ member), 267
muGrid::StateField::nb_memory (C++ member),

266
muGrid::StateField::old (C++ function), 266
muGrid::StateField::operator= (C++ function),

266
muGrid::StateField::prefix (C++ member), 266
muGrid::StateField::StateField (C++ function),

266
muGrid::StateFieldMap (C++ class), 267
muGrid::StateFieldMap::~StateFieldMap (C++

function), 267
muGrid::StateFieldMap::begin (C++ function), 268
muGrid::StateFieldMap::CFieldMap_t (C++ type),

267
muGrid::StateFieldMap::cmaps (C++ member), 269
muGrid::StateFieldMap::const_iterator (C++

type), 267
muGrid::StateFieldMap::end (C++ function), 268
muGrid::StateFieldMap::FieldMap_t (C++ type),

267
muGrid::StateFieldMap::get_current (C++ func-

tion), 268

muGrid::StateFieldMap::get_fields (C++ func-
tion), 268

muGrid::StateFieldMap::get_nb_rows (C++ func-
tion), 268

muGrid::StateFieldMap::get_old (C++ function),
268

muGrid::StateFieldMap::get_state_field (C++
function), 268

muGrid::StateFieldMap::iteration (C++ mem-
ber), 269

muGrid::StateFieldMap::Iterator (C++ class),
164

muGrid::StateFieldMap::iterator (C++ type), 267
muGrid::StateFieldMap::Iterator::~Iterator

(C++ function), 165
muGrid::StateFieldMap::Iterator::index (C++

member), 165
muGrid::StateFieldMap::Iterator::Iterator

(C++ function), 165
muGrid::StateFieldMap::Iterator::operator!=

(C++ function), 165
muGrid::StateFieldMap::Iterator::operator*

(C++ function), 165
muGrid::StateFieldMap::Iterator::operator++

(C++ function), 165
muGrid::StateFieldMap::Iterator::operator=

(C++ function), 165
muGrid::StateFieldMap::Iterator::state_field_map

(C++ member), 165
muGrid::StateFieldMap::Iterator::StateFieldMap_t

(C++ type), 164
muGrid::StateFieldMap::Iterator::StateWrapper_t

(C++ type), 164
muGrid::StateFieldMap::make_cmaps (C++ func-

tion), 268
muGrid::StateFieldMap::make_maps (C++ func-

tion), 268
muGrid::StateFieldMap::maps (C++ member), 269
muGrid::StateFieldMap::nb_rows (C++ member),

269
muGrid::StateFieldMap::operator= (C++ func-

tion), 268
muGrid::StateFieldMap::operator[] (C++ func-

tion), 268
muGrid::StateFieldMap::size (C++ function), 268
muGrid::StateFieldMap::state_field (C++ mem-

ber), 269
muGrid::StateFieldMap::StateFieldMap (C++

function), 267
muGrid::StateFieldMap::StateWrapper (C++

class), 269
muGrid::StateFieldMap::StateWrapper::~StateWrapper

(C++ function), 269
muGrid::StateFieldMap::StateWrapper::current

Index 419

µSpectre Documentation, Release v0.1

(C++ function), 269
muGrid::StateFieldMap::StateWrapper::current_val

(C++ member), 270
muGrid::StateFieldMap::StateWrapper::CurrentVal_t

(C++ type), 269
muGrid::StateFieldMap::StateWrapper::old

(C++ function), 269
muGrid::StateFieldMap::StateWrapper::old_vals

(C++ member), 270
muGrid::StateFieldMap::StateWrapper::OldVal_t

(C++ type), 269
muGrid::StateFieldMap::StateWrapper::StateFieldMap_t

(C++ type), 269
muGrid::StateFieldMap::StateWrapper::StateWrapper

(C++ function), 269
muGrid::StaticFieldMap (C++ class), 270
muGrid::StaticFieldMap::~StaticFieldMap

(C++ function), 271
muGrid::StaticFieldMap::begin (C++ function),

271, 272
muGrid::StaticFieldMap::const_iterator (C++

type), 270
muGrid::StaticFieldMap::end (C++ function), 271,

272
muGrid::StaticFieldMap::enumerate_indices

(C++ function), 272
muGrid::StaticFieldMap::Enumeration_t (C++

type), 270
muGrid::StaticFieldMap::Field_t (C++ type), 270
muGrid::StaticFieldMap::GetIterationType

(C++ function), 272
muGrid::StaticFieldMap::IsStatic (C++ func-

tion), 272
muGrid::StaticFieldMap::Iterator (C++ class),

159
muGrid::StaticFieldMap::iterator (C++ type),

270
muGrid::StaticFieldMap::Iterator::~Iterator

(C++ function), 159
muGrid::StaticFieldMap::Iterator::index

(C++ member), 160
muGrid::StaticFieldMap::Iterator::iterate

(C++ member), 160
muGrid::StaticFieldMap::Iterator::Iterator

(C++ function), 159
muGrid::StaticFieldMap::Iterator::map (C++

member), 160
muGrid::StaticFieldMap::Iterator::operator!=

(C++ function), 160
muGrid::StaticFieldMap::Iterator::operator*

(C++ function), 159
muGrid::StaticFieldMap::Iterator::operator++

(C++ function), 159
muGrid::StaticFieldMap::Iterator::operator=

(C++ function), 159
muGrid::StaticFieldMap::Iterator::operator==

(C++ function), 159
muGrid::StaticFieldMap::Iterator::operator->

(C++ function), 159
muGrid::StaticFieldMap::Iterator::storage_type

(C++ type), 159
muGrid::StaticFieldMap::Iterator::value_type

(C++ type), 159
muGrid::StaticFieldMap::mean (C++ function), 271
muGrid::StaticFieldMap::operator= (C++ func-

tion), 271
muGrid::StaticFieldMap::operator[] (C++ func-

tion), 271
muGrid::StaticFieldMap::Parent (C++ type), 270
muGrid::StaticFieldMap::PlainType (C++ type),

270
muGrid::StaticFieldMap::reference (C++ type),

270
muGrid::StaticFieldMap::Return_t (C++ type),

270
muGrid::StaticFieldMap::Scalar (C++ type), 270
muGrid::StaticFieldMap::StaticFieldMap (C++

function), 271
muGrid::StaticFieldMap::Stride (C++ function),

272
muGrid::StaticStateFieldMap (C++ class), 272
muGrid::StaticStateFieldMap::~StaticStateFieldMap

(C++ function), 273
muGrid::StaticStateFieldMap::begin (C++ func-

tion), 273
muGrid::StaticStateFieldMap::CMapArray_t

(C++ type), 272
muGrid::StaticStateFieldMap::const_iterator

(C++ type), 273
muGrid::StaticStateFieldMap::CStaticFieldMap_t

(C++ type), 272
muGrid::StaticStateFieldMap::end (C++ func-

tion), 273
muGrid::StaticStateFieldMap::FieldMutability

(C++ function), 274
muGrid::StaticStateFieldMap::get_current

(C++ function), 273
muGrid::StaticStateFieldMap::get_current_static

(C++ function), 273
muGrid::StaticStateFieldMap::get_old_static

(C++ function), 273
muGrid::StaticStateFieldMap::GetIterationType

(C++ function), 274
muGrid::StaticStateFieldMap::GetNbMemory

(C++ function), 274
muGrid::StaticStateFieldMap::HelperRet_t

(C++ type), 274
muGrid::StaticStateFieldMap::Iterator (C++

420 Index

µSpectre Documentation, Release v0.1

class), 165
muGrid::StaticStateFieldMap::iterator (C++

type), 273
muGrid::StaticStateFieldMap::Iterator::~Iterator

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::index

(C++ member), 166
muGrid::StaticStateFieldMap::Iterator::Iterator

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::operator!=

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::operator*

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::operator++

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::operator=

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::operator==

(C++ function), 166
muGrid::StaticStateFieldMap::Iterator::state_field_map

(C++ member), 166
muGrid::StaticStateFieldMap::Iterator::StateWrapper_t

(C++ type), 166
muGrid::StaticStateFieldMap::Iterator::StaticStateFieldMap_t

(C++ type), 166
muGrid::StaticStateFieldMap::make_cmaps

(C++ function), 274
muGrid::StaticStateFieldMap::make_maps (C++

function), 274
muGrid::StaticStateFieldMap::map_helper

(C++ function), 274
muGrid::StaticStateFieldMap::MapArray_t

(C++ type), 272
muGrid::StaticStateFieldMap::operator= (C++

function), 273
muGrid::StaticStateFieldMap::operator[]

(C++ function), 273
muGrid::StaticStateFieldMap::Parent (C++

type), 272
muGrid::StaticStateFieldMap::Scalar (C++

type), 272
muGrid::StaticStateFieldMap::static_cmaps

(C++ member), 274
muGrid::StaticStateFieldMap::static_maps

(C++ member), 274
muGrid::StaticStateFieldMap::StaticFieldMap_t

(C++ type), 272
muGrid::StaticStateFieldMap::StaticStateFieldMap

(C++ function), 273
muGrid::StaticStateFieldMap::StaticStateWrapper

(C++ class), 274
muGrid::StaticStateFieldMap::StaticStateWrapper::~StaticStateWrapper

(C++ function), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::current

(C++ function), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::current_val

(C++ member), 276
muGrid::StaticStateFieldMap::StaticStateWrapper::CurrentStorage_t

(C++ type), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::CurrentVal_t

(C++ type), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::make_old_vals_static

(C++ function), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::old

(C++ function), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::old_vals

(C++ member), 276
muGrid::StaticStateFieldMap::StaticStateWrapper::old_vals_helper_static

(C++ function), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::OldStorage_t

(C++ type), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::OldVal_t

(C++ type), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::StaticStateFieldMap_t

(C++ type), 275
muGrid::StaticStateFieldMap::StaticStateWrapper::StaticStateWrapper

(C++ function), 275
muGrid::T1FieldMap (C++ type), 299
muGrid::T1NFieldMap (C++ type), 299
muGrid::T1StateNFieldMap (C++ type), 305
muGrid::T2FieldMap (C++ type), 299
muGrid::T2StateFieldMap (C++ type), 305
muGrid::T4FieldMap (C++ type), 300
muGrid::T4Mat (C++ type), 306
muGrid::T4MatMap (C++ type), 306
muGrid::T4StateFieldMap (C++ type), 305
muGrid::Tensors (C++ type), 314
muGrid::Tensors::I2 (C++ function), 314
muGrid::Tensors::I4S (C++ function), 315
muGrid::Tensors::is_tensor (C++ struct), 153
muGrid::Tensors::is_tensor::value (C++ mem-

ber), 153
muGrid::Tensors::outer (C++ function), 314
muGrid::Tensors::outer_over (C++ function), 315
muGrid::Tensors::outer_under (C++ function), 315
muGrid::Tensors::Tens2_t (C++ type), 314
muGrid::Tensors::Tens4_t (C++ type), 314
muGrid::threeD (C++ member), 308
muGrid::to_tuple (C++ function), 308
muGrid::twoD (C++ member), 308
muGrid::TypedField (C++ class), 281
muGrid::TypedField::~TypedField (C++ function),

281
muGrid::TypedField::buffer_size (C++ function),

282
muGrid::TypedField::EigenRep_t (C++ type), 281
muGrid::TypedField::Negative (C++ type), 281

Index 421

µSpectre Documentation, Release v0.1

muGrid::TypedField::operator= (C++ function),
282

muGrid::TypedField::Parent (C++ type), 281
muGrid::TypedField::push_back (C++ function),

282
muGrid::TypedField::resize (C++ function), 283
muGrid::TypedField::safe_cast (C++ function),

282
muGrid::TypedField::set_pad_size (C++ func-

tion), 282
muGrid::TypedField::set_zero (C++ function), 282
muGrid::TypedField::TypedField (C++ function),

281, 283
muGrid::TypedField::values (C++ member), 283
muGrid::TypedFieldBase (C++ class), 283
muGrid::TypedFieldBase::~TypedFieldBase

(C++ function), 284
muGrid::TypedFieldBase::data (C++ function), 285
muGrid::TypedFieldBase::data_ptr (C++ mem-

ber), 286
muGrid::TypedFieldBase::Eigen_cmap (C++ type),

283
muGrid::TypedFieldBase::eigen_map (C++ func-

tion), 285
muGrid::TypedFieldBase::Eigen_map (C++ type),

283
muGrid::TypedFieldBase::eigen_pixel (C++

function), 284
muGrid::TypedFieldBase::eigen_quad_pt (C++

function), 284
muGrid::TypedFieldBase::eigen_vec (C++ func-

tion), 284
muGrid::TypedFieldBase::EigenRep_t (C++ type),

283
muGrid::TypedFieldBase::get_pixel_map (C++

function), 284, 285
muGrid::TypedFieldBase::get_quad_pt_map

(C++ function), 285
muGrid::TypedFieldBase::get_stored_typeid

(C++ function), 284
muGrid::TypedFieldBase::Negative (C++ struct),

220
muGrid::TypedFieldBase::Negative::field

(C++ member), 220
muGrid::TypedFieldBase::operator+= (C++ func-

tion), 284
muGrid::TypedFieldBase::operator= (C++ func-

tion), 284
muGrid::TypedFieldBase::operator- (C++ func-

tion), 284
muGrid::TypedFieldBase::operator-= (C++ func-

tion), 284
muGrid::TypedFieldBase::Parent (C++ type), 283
muGrid::TypedFieldBase::Scalar (C++ type), 283

muGrid::TypedFieldBase::set_data_ptr (C++
function), 285

muGrid::TypedFieldBase::TypedFieldBase (C++
function), 284, 285

muGrid::TypedStateField (C++ class), 286
muGrid::TypedStateField::~TypedStateField

(C++ function), 286
muGrid::TypedStateField::current (C++ func-

tion), 287
muGrid::TypedStateField::get_fields (C++

function), 287
muGrid::TypedStateField::get_stored_typeid

(C++ function), 286
muGrid::TypedStateField::old (C++ function), 287
muGrid::TypedStateField::operator= (C++ func-

tion), 286
muGrid::TypedStateField::Parent (C++ type), 286
muGrid::TypedStateField::TypedStateField

(C++ function), 286, 287
muGrid::Uint (C++ type), 300
muGrid::UintField (C++ type), 300
muGrid::Uintfield (C++ type), 304
muGrid::Unknown (C++ member), 309
muGrid::WrappedField (C++ class), 291
muGrid::WrappedField::~WrappedField (C++

function), 292
muGrid::WrappedField::buffer_size (C++ func-

tion), 292
muGrid::WrappedField::EigenRep_t (C++ type),

292
muGrid::WrappedField::make_const (C++ func-

tion), 293
muGrid::WrappedField::operator= (C++ function),

292
muGrid::WrappedField::Parent (C++ type), 292
muGrid::WrappedField::resize (C++ function), 293
muGrid::WrappedField::set_pad_size (C++ func-

tion), 292
muGrid::WrappedField::set_zero (C++ function),

292
muGrid::WrappedField::size (C++ member), 293
muGrid::WrappedField::WrappedField (C++ func-

tion), 292
muSpectre (C++ type), 315
muSpectre::banner (C++ function), 321
muSpectre::Cell (C++ class), 103
muSpectre::Cell::~Cell (C++ function), 104
muSpectre::Cell::Adaptor (C++ type), 104
muSpectre::Cell::add_material (C++ function),

105
muSpectre::Cell::add_projected_directional_stiffness

(C++ function), 106
muSpectre::Cell::add_projected_directional_stiffness_helper

(C++ function), 108

422 Index

µSpectre Documentation, Release v0.1

muSpectre::Cell::apply_directional_stiffness
(C++ function), 108

muSpectre::Cell::apply_projection (C++ func-
tion), 106

muSpectre::Cell::Cell (C++ function), 104
muSpectre::Cell::check_material_coverage

(C++ function), 105
muSpectre::Cell::complete_material_assignment_simple

(C++ function), 105
muSpectre::Cell::Eigen_cmap (C++ type), 103
muSpectre::Cell::Eigen_map (C++ type), 103
muSpectre::Cell::EigenCVec_t (C++ type), 104
muSpectre::Cell::EigenVec_t (C++ type), 104
muSpectre::Cell::evaluate_projected_directional_stiffness

(C++ function), 106
muSpectre::Cell::evaluate_stress (C++ func-

tion), 106
muSpectre::Cell::evaluate_stress_eigen (C++

function), 106
muSpectre::Cell::evaluate_stress_tangent

(C++ function), 106
muSpectre::Cell::evaluate_stress_tangent_eigen

(C++ function), 106
muSpectre::Cell::fields (C++ member), 107
muSpectre::Cell::get_adaptor (C++ function), 105
muSpectre::Cell::get_communicator (C++ func-

tion), 104
muSpectre::Cell::get_fields (C++ function), 106
muSpectre::Cell::get_formulation (C++ func-

tion), 104
muSpectre::Cell::get_material_dim (C++ func-

tion), 104
muSpectre::Cell::get_nb_dof (C++ function), 104
muSpectre::Cell::get_nb_pixels (C++ function),

104
muSpectre::Cell::get_nb_quad (C++ function), 105
muSpectre::Cell::get_pixel_indices (C++ func-

tion), 105
muSpectre::Cell::get_pixels (C++ function), 105
muSpectre::Cell::get_projection (C++ function),

107
muSpectre::Cell::get_quad_pt_indices (C++

function), 105
muSpectre::Cell::get_spatial_dim (C++ func-

tion), 105
muSpectre::Cell::get_splitness (C++ function),

107
muSpectre::Cell::get_strain (C++ function), 106
muSpectre::Cell::get_strain_shape (C++ func-

tion), 105
muSpectre::Cell::get_strain_size (C++ func-

tion), 105
muSpectre::Cell::get_stress (C++ function), 106
muSpectre::Cell::get_tangent (C++ function), 106

muSpectre::Cell::globalise_complex_internal_field
(C++ function), 106

muSpectre::Cell::globalise_int_internal_field
(C++ function), 106

muSpectre::Cell::globalise_internal_field
(C++ function), 107

muSpectre::Cell::globalise_real_internal_field
(C++ function), 106

muSpectre::Cell::globalise_uint_internal_field
(C++ function), 106

muSpectre::Cell::initialise (C++ function), 105
muSpectre::Cell::initialised (C++ member), 107
muSpectre::Cell::is_cell_split (C++ member),

107
muSpectre::Cell::is_initialised (C++ function),

104
muSpectre::Cell::is_pixel_inside (C++ func-

tion), 107
muSpectre::Cell::is_point_inside (C++ func-

tion), 107
muSpectre::Cell::make_pixels_precipitate_for_laminate_material

(C++ function), 105
muSpectre::Cell::make_pixels_precipitate_for_laminate_material_helper

(C++ function), 105
muSpectre::Cell::Material_ptr (C++ type), 103
muSpectre::Cell::Material_sptr (C++ type), 103
muSpectre::Cell::materials (C++ member), 107
muSpectre::Cell::Matrix_t (C++ type), 103
muSpectre::Cell::operator= (C++ function), 104
muSpectre::Cell::projection (C++ member), 107
muSpectre::Cell::Projection_ptr (C++ type), 103
muSpectre::Cell::save_history_variables

(C++ function), 105
muSpectre::Cell::set_uniform_strain (C++

function), 104
muSpectre::Cell::strain (C++ member), 107
muSpectre::Cell::stress (C++ member), 107
muSpectre::Cell::tangent (C++ member), 107
muSpectre::cell_input (C++ function), 319, 320
muSpectre::CellAdaptor (C++ class), 108
muSpectre::CellAdaptor::cell (C++ member), 109
muSpectre::CellAdaptor::CellAdaptor (C++

function), 109
muSpectre::CellAdaptor::cols (C++ function), 109
muSpectre::CellAdaptor::operator* (C++ func-

tion), 109
muSpectre::CellAdaptor::RealScalar (C++ type),

108
muSpectre::CellAdaptor::rows (C++ function), 109
muSpectre::CellAdaptor::Scalar (C++ type), 108
muSpectre::CellAdaptor::StorageIndex (C++

type), 108
muSpectre::CellAdaptor::[anonymous] (C++

enum), 108

Index 423

µSpectre Documentation, Release v0.1

muSpectre::CellAdaptor::[anonymous]::ColsAtCompileTime
(C++ enumerator), 108

muSpectre::CellAdaptor::[anonymous]::IsRowMajor
(C++ enumerator), 108

muSpectre::CellAdaptor::[anonymous]::MaxColsAtCompileTime
(C++ enumerator), 108

muSpectre::CellAdaptor::[anonymous]::MaxRowsAtCompileTime
(C++ enumerator), 108

muSpectre::CellAdaptor::[anonymous]::RowsAtCompileTime
(C++ enumerator), 108

muSpectre::CellSplit (C++ class), 109
muSpectre::CellSplit::~CellSplit (C++ func-

tion), 110
muSpectre::CellSplit::add_material (C++ func-

tion), 110
muSpectre::CellSplit::CellSplit (C++ function),

109
muSpectre::CellSplit::check_material_coverage

(C++ function), 110
muSpectre::CellSplit::complete_material_assignment

(C++ function), 110
muSpectre::CellSplit::evaluate_stress (C++

function), 110
muSpectre::CellSplit::evaluate_stress_tangent

(C++ function), 110
muSpectre::CellSplit::FullResponse_t (C++

type), 109
muSpectre::CellSplit::get_assigned_ratios

(C++ function), 110
muSpectre::CellSplit::get_index_incomplete_pixels

(C++ function), 110
muSpectre::CellSplit::get_unassigned_pixels

(C++ function), 110
muSpectre::CellSplit::get_unassigned_ratios_incomplete_pixels

(C++ function), 110
muSpectre::CellSplit::IncompletePixels (C++

class), 150
muSpectre::CellSplit::IncompletePixels::~IncompletePixels

(C++ function), 150
muSpectre::CellSplit::IncompletePixels::begin

(C++ function), 150
muSpectre::CellSplit::IncompletePixels::cell

(C++ member), 150
muSpectre::CellSplit::IncompletePixels::end

(C++ function), 150
muSpectre::CellSplit::IncompletePixels::incomplete_assigned_ratios

(C++ member), 150
muSpectre::CellSplit::IncompletePixels::IncompletePixels

(C++ function), 150
muSpectre::CellSplit::IncompletePixels::index_incomplete_pixels

(C++ member), 150
muSpectre::CellSplit::IncompletePixels::iterator

(C++ class), 166
muSpectre::CellSplit::IncompletePixels::iterator::~iterator

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::deref_helper

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::dim

(C++ member), 167
muSpectre::CellSplit::IncompletePixels::iterator::incomplete_pixels

(C++ member), 167
muSpectre::CellSplit::IncompletePixels::iterator::index

(C++ member), 167
muSpectre::CellSplit::IncompletePixels::iterator::iterator

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::operator!=

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::operator*

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::operator++

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::operator==

(C++ function), 167
muSpectre::CellSplit::IncompletePixels::iterator::value_type

(C++ type), 167
muSpectre::CellSplit::IncompletePixels::size

(C++ function), 150
muSpectre::CellSplit::make_automatic_precipitate_split_pixels

(C++ function), 110
muSpectre::CellSplit::make_incomplete_pixels

(C++ function), 110
muSpectre::CellSplit::operator= (C++ function),

110
muSpectre::CellSplit::Parent (C++ type), 109
muSpectre::CellSplit::Projection_ptr (C++

type), 109
muSpectre::CellSplit::set_p_k_zero (C++ func-

tion), 110
muSpectre::check_symmetry (C++ function), 321
muSpectre::ConvergenceError (C++ class), 111
muSpectre::Correction (C++ class), 115
muSpectre::Correction::correct_length (C++

function), 115
muSpectre::Correction::correct_origin (C++

function), 115
muSpectre::Correction::correct_vector (C++

function), 115
muSpectre::Correction<2> (C++ class), 115
muSpectre::Correction<2>::correct_length

(C++ function), 115
muSpectre::Correction<2>::correct_origin

(C++ function), 115
muSpectre::Correction<2>::correct_vector

(C++ function), 115
muSpectre::Correction<3> (C++ class), 115
muSpectre::Correction<3>::correct_length

(C++ function), 115
muSpectre::Correction<3>::correct_origin

424 Index

µSpectre Documentation, Release v0.1

(C++ function), 115
muSpectre::Correction<3>::correct_vector

(C++ function), 115
muSpectre::de_geus (C++ function), 322
muSpectre::dof_for_formulation (C++ function),

321
muSpectre::ElasticModulus (C++ enum), 318
muSpectre::ElasticModulus::Bulk (C++ enumera-

tor), 318
muSpectre::ElasticModulus::E (C++ enumerator),

318
muSpectre::ElasticModulus::G (C++ enumerator),

319
muSpectre::ElasticModulus::K (C++ enumerator),

318
muSpectre::ElasticModulus::lambda (C++ enu-

merator), 318
muSpectre::ElasticModulus::M (C++ enumerator),

319
muSpectre::ElasticModulus::mu (C++ enumera-

tor), 319
muSpectre::ElasticModulus::no_modulus_ (C++

enumerator), 319
muSpectre::ElasticModulus::nu (C++ enumera-

tor), 319
muSpectre::ElasticModulus::Poisson (C++ enu-

merator), 319
muSpectre::ElasticModulus::Pwave (C++ enumer-

ator), 319
muSpectre::ElasticModulus::Shear (C++ enumer-

ator), 318
muSpectre::ElasticModulus::Young (C++ enumer-

ator), 318
muSpectre::FiniteDiff (C++ enum), 316
muSpectre::FiniteDiff::backward (C++ enumera-

tor), 317
muSpectre::FiniteDiff::centred (C++ enumera-

tor), 317
muSpectre::FiniteDiff::forward (C++ enumera-

tor), 317
muSpectre::Formulation (C++ enum), 316
muSpectre::Formulation::finite_strain (C++

enumerator), 316
muSpectre::Formulation::native (C++ enumera-

tor), 316
muSpectre::Formulation::small_strain (C++

enumerator), 316
muSpectre::Formulation::small_strain_sym

(C++ enumerator), 316
muSpectre::get_formulation_strain_type (C++

function), 321
muSpectre::get_stored_strain_type (C++ func-

tion), 321
muSpectre::get_stored_stress_type (C++ func-

tion), 321
muSpectre::Grad_t (C++ type), 315
muSpectre::internal (C++ type), 322
muSpectre::internal::cell_input_helper (C++

function), 322
muSpectre::internal::DefaultOrder (C++ struct),

115
muSpectre::internal::DefaultOrder::value

(C++ member), 116
muSpectre::internal::DefaultOrder<twoD>

(C++ struct), 116
muSpectre::internal::DefaultOrder<twoD>::value

(C++ member), 116
muSpectre::internal::MaterialStressEvaluator

(C++ struct), 219
muSpectre::internal::MaterialStressEvaluator::compute

(C++ function), 219
muSpectre::internal::MaterialStressEvaluator<Formulation::finite_strain>

(C++ struct), 219
muSpectre::internal::MaterialStressEvaluator<Formulation::finite_strain>::compute

(C++ function), 219
muSpectre::internal::MaterialStressTangentEvaluator

(C++ struct), 219
muSpectre::internal::MaterialStressTangentEvaluator::compute

(C++ function), 220
muSpectre::internal::MaterialStressTangentEvaluator<Formulation::finite_strain>

(C++ struct), 220
muSpectre::internal::MaterialStressTangentEvaluator<Formulation::finite_strain>::compute

(C++ function), 220
muSpectre::internal::RotationHelper (C++

struct), 249
muSpectre::internal::RotationHelper<firstOrder>

(C++ struct), 249
muSpectre::internal::RotationHelper<firstOrder>::rotate

(C++ function), 249
muSpectre::internal::RotationHelper<fourthOrder>

(C++ struct), 249
muSpectre::internal::RotationHelper<fourthOrder>::rotate

(C++ function), 249
muSpectre::internal::RotationHelper<secondOrder>

(C++ struct), 249
muSpectre::internal::RotationHelper<secondOrder>::rotate

(C++ function), 250
muSpectre::internal::RotationMatrixComputerAngle

(C++ struct), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

threeD> (C++ struct), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

threeD>::Angles_t (C++ type), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

threeD>::compute (C++ function), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

threeD>::Dim (C++ member), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

Index 425

µSpectre Documentation, Release v0.1

threeD>::RotMat_t (C++ type), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

twoD> (C++ struct), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

twoD>::Angles_t (C++ type), 250
muSpectre::internal::RotationMatrixComputerAngle<Order,

twoD>::compute (C++ function), 251
muSpectre::internal::RotationMatrixComputerAngle<Order,

twoD>::Dim (C++ member), 251
muSpectre::internal::RotationMatrixComputerAngle<Order,

twoD>::RotMat_t (C++ type), 250
muSpectre::internal::RotationMatrixComputerNormal

(C++ struct), 251
muSpectre::internal::RotationMatrixComputerNormal<threeD>

(C++ struct), 251
muSpectre::internal::RotationMatrixComputerNormal<threeD>::compute

(C++ function), 251
muSpectre::internal::RotationMatrixComputerNormal<threeD>::Dim

(C++ member), 251
muSpectre::internal::RotationMatrixComputerNormal<threeD>::RotMat_t

(C++ type), 251
muSpectre::internal::RotationMatrixComputerNormal<threeD>::Vec_t

(C++ type), 251
muSpectre::internal::RotationMatrixComputerNormal<twoD>

(C++ struct), 251
muSpectre::internal::RotationMatrixComputerNormal<twoD>::compute

(C++ function), 252
muSpectre::internal::RotationMatrixComputerNormal<twoD>::Dim

(C++ member), 252
muSpectre::internal::RotationMatrixComputerNormal<twoD>::RotMat_t

(C++ type), 251
muSpectre::internal::RotationMatrixComputerNormal<twoD>::Vec_t

(C++ type), 251
muSpectre::internal::RotationMatrixComputerTwoVec

(C++ struct), 252
muSpectre::internal::RotationMatrixComputerTwoVec<threeD>

(C++ struct), 252
muSpectre::internal::RotationMatrixComputerTwoVec<threeD>::compute

(C++ function), 252
muSpectre::internal::RotationMatrixComputerTwoVec<threeD>::Dim

(C++ member), 252
muSpectre::internal::RotationMatrixComputerTwoVec<threeD>::RotMat_t

(C++ type), 252
muSpectre::internal::RotationMatrixComputerTwoVec<threeD>::Vec_t

(C++ type), 252
muSpectre::internal::RotationMatrixComputerTwoVec<twoD>

(C++ struct), 252
muSpectre::internal::RotationMatrixComputerTwoVec<twoD>::compute

(C++ function), 253
muSpectre::internal::RotationMatrixComputerTwoVec<twoD>::Dim

(C++ member), 253
muSpectre::internal::RotationMatrixComputerTwoVec<twoD>::RotMat_t

(C++ type), 252
muSpectre::internal::RotationMatrixComputerTwoVec<twoD>::Vec_t

(C++ type), 252
muSpectre::internal::Solver_traits (C++

struct), 259
muSpectre::internal::Solver_traits<SolverBiCGSTABEigen>

(C++ struct), 259
muSpectre::internal::Solver_traits<SolverBiCGSTABEigen>::Solver

(C++ type), 259
muSpectre::internal::Solver_traits<SolverCGEigen>

(C++ struct), 259
muSpectre::internal::Solver_traits<SolverCGEigen>::Solver

(C++ type), 259
muSpectre::internal::Solver_traits<SolverDGMRESEigen>

(C++ struct), 259
muSpectre::internal::Solver_traits<SolverDGMRESEigen>::Solver

(C++ type), 259
muSpectre::internal::Solver_traits<SolverGMRESEigen>

(C++ struct), 259
muSpectre::internal::Solver_traits<SolverGMRESEigen>::Solver

(C++ type), 260
muSpectre::internal::Solver_traits<SolverMINRESEigen>

(C++ struct), 260
muSpectre::internal::Solver_traits<SolverMINRESEigen>::Solver

(C++ type), 260
muSpectre::internal::StrainsTComputer (C++

struct), 278
muSpectre::internal::StrainsTComputer<std::tuple<StrainMap_t,

StrainMap_t>> (C++ struct), 278
muSpectre::internal::StrainsTComputer<std::tuple<StrainMap_t,

StrainMap_t>>::type (C++ type), 278
muSpectre::internal::StrainsTComputer<std::tuple<StrainMap_t>>

(C++ struct), 278
muSpectre::internal::StrainsTComputer<std::tuple<StrainMap_t>>::type

(C++ type), 278
muSpectre::internal::StressesTComputer (C++

struct), 278
muSpectre::internal::StressesTComputer<std::tuple<StressMap_t,

TangentMap_t>> (C++ struct), 278
muSpectre::internal::StressesTComputer<std::tuple<StressMap_t,

TangentMap_t>>::type (C++ type), 278
muSpectre::internal::StressesTComputer<std::tuple<StressMap_t>>

(C++ struct), 278
muSpectre::internal::StressesTComputer<std::tuple<StressMap_t>>::type

(C++ type), 278
muSpectre::internal::TupleBuilder (C++ struct),

280
muSpectre::internal::TupleBuilder::build

(C++ function), 280
muSpectre::internal::TupleBuilder::helper

(C++ function), 280
muSpectre::IsStrainInitialised (C++ enum), 319
muSpectre::IsStrainInitialised::False (C++

enumerator), 319
muSpectre::IsStrainInitialised::True (C++

enumerator), 319

426 Index

µSpectre Documentation, Release v0.1

muSpectre::iterable_proxy (C++ class), 153
muSpectre::iterable_proxy::~iterable_proxy

(C++ function), 154
muSpectre::iterable_proxy::begin (C++ func-

tion), 155
muSpectre::iterable_proxy::end (C++ function),

155
muSpectre::iterable_proxy::iterable_proxy

(C++ function), 154
muSpectre::iterable_proxy::iterator (C++

class), 155
muSpectre::iterable_proxy::iterator::~iterator

(C++ function), 156
muSpectre::iterable_proxy::iterator::index

(C++ member), 156
muSpectre::iterable_proxy::iterator::iterator

(C++ function), 155, 156
muSpectre::iterable_proxy::iterator::iterator_category

(C++ type), 155
muSpectre::iterable_proxy::iterator::operator!=

(C++ function), 156
muSpectre::iterable_proxy::iterator::operator*

(C++ function), 156
muSpectre::iterable_proxy::iterator::operator++

(C++ function), 156
muSpectre::iterable_proxy::iterator::operator=

(C++ function), 156
muSpectre::iterable_proxy::iterator::proxy

(C++ member), 156
muSpectre::iterable_proxy::iterator::quad_pt_iter

(C++ member), 156
muSpectre::iterable_proxy::iterator::strain_map

(C++ member), 156
muSpectre::iterable_proxy::iterator::stress_map

(C++ member), 156
muSpectre::iterable_proxy::iterator::value_type

(C++ type), 155
muSpectre::iterable_proxy::material (C++

member), 155
muSpectre::iterable_proxy::operator= (C++

function), 155
muSpectre::iterable_proxy::strain_field

(C++ member), 155
muSpectre::iterable_proxy::Strain_t (C++

type), 154
muSpectre::iterable_proxy::StrainFieldTup

(C++ type), 154
muSpectre::iterable_proxy::Stress_t (C++

type), 154
muSpectre::iterable_proxy::stress_tup (C++

member), 155
muSpectre::iterable_proxy::StressFieldTup

(C++ type), 154
muSpectre::LamCombination (C++ class), 168

muSpectre::LamCombination::lam_C_combine
(C++ function), 168, 169

muSpectre::LamCombination::lam_S_combine
(C++ function), 168, 169

muSpectre::LamCombination::Stiffness_t (C++
type), 168

muSpectre::LamCombination::Stress_t (C++
type), 168

muSpectre::LamHomogen (C++ class), 169
muSpectre::LamHomogen::del_energy_eval (C++

function), 173
muSpectre::LamHomogen::delta_equation_stress_stiffness_eval

(C++ function), 170, 172
muSpectre::LamHomogen::delta_equation_stress_stiffness_eval_strain_1

(C++ function), 170, 172
muSpectre::LamHomogen::Equation_index_t

(C++ type), 169
muSpectre::LamHomogen::Equation_stiffness_t

(C++ type), 169
muSpectre::LamHomogen::Equation_strain_t

(C++ type), 169
muSpectre::LamHomogen::Equation_stress_t

(C++ type), 169
muSpectre::LamHomogen::evaluate_stress (C++

function), 174
muSpectre::LamHomogen::evaluate_stress_tangent

(C++ function), 174
muSpectre::LamHomogen::Function_t (C++ type),

169
muSpectre::LamHomogen::get_equation_indices

(C++ function), 170, 171
muSpectre::LamHomogen::get_equation_stiffness

(C++ function), 170, 171
muSpectre::LamHomogen::get_equation_strain

(C++ function), 171
muSpectre::LamHomogen::get_equation_stress

(C++ function), 171
muSpectre::LamHomogen::get_parallel_indices

(C++ function), 170, 171
muSpectre::LamHomogen::get_parallel_strain

(C++ function), 171
muSpectre::LamHomogen::get_parallel_stress

(C++ function), 171
muSpectre::LamHomogen::lam_stiffness_combine

(C++ function), 173
muSpectre::LamHomogen::lam_stress_combine

(C++ function), 170, 173
muSpectre::LamHomogen::laminate_solver (C++

function), 173
muSpectre::LamHomogen::linear_eqs (C++ func-

tion), 171
muSpectre::LamHomogen::make_total_strain

(C++ function), 170, 171
muSpectre::LamHomogen::make_total_stress

Index 427

µSpectre Documentation, Release v0.1

(C++ function), 171
muSpectre::LamHomogen::Parallel_index_t

(C++ type), 169
muSpectre::LamHomogen::Parallel_strain_t

(C++ type), 169
muSpectre::LamHomogen::Parallel_stress_t

(C++ type), 169
muSpectre::LamHomogen::Stiffness_t (C++ type),

169
muSpectre::LamHomogen::Strain_t (C++ type), 169
muSpectre::LamHomogen::Stress_t (C++ type), 169
muSpectre::LamHomogen::Vec_t (C++ type), 169
muSpectre::LoadSteps_t (C++ type), 315
muSpectre::make_cell (C++ function), 320
muSpectre::make_cell_ptr (C++ function), 320
muSpectre::make_cell_split (C++ function), 320
muSpectre::MaterialBase (C++ class), 179
muSpectre::MaterialBase::~MaterialBase (C++

function), 180
muSpectre::MaterialBase::add_pixel (C++ func-

tion), 180
muSpectre::MaterialBase::add_pixel_split

(C++ function), 180
muSpectre::MaterialBase::allocate_optional_fields

(C++ function), 180
muSpectre::MaterialBase::assigned_ratio

(C++ member), 181
muSpectre::MaterialBase::compute_stresses

(C++ function), 180
muSpectre::MaterialBase::compute_stresses_tangent

(C++ function), 180
muSpectre::MaterialBase::constitutive_law_dynamic

(C++ function), 181
muSpectre::MaterialBase::DynMatrix_t (C++

type), 179
muSpectre::MaterialBase::get_assigned_ratio

(C++ function), 181
muSpectre::MaterialBase::get_assigned_ratio_field

(C++ function), 181
muSpectre::MaterialBase::get_assigned_ratios

(C++ function), 181
muSpectre::MaterialBase::get_collection

(C++ function), 181
muSpectre::MaterialBase::get_material_dimension

(C++ function), 180
muSpectre::MaterialBase::get_name (C++ func-

tion), 180
muSpectre::MaterialBase::get_pixel_indices

(C++ function), 181
muSpectre::MaterialBase::get_quad_pt_indices

(C++ function), 181
muSpectre::MaterialBase::initialise (C++

function), 180
muSpectre::MaterialBase::internal_fields

(C++ member), 181
muSpectre::MaterialBase::is_initialised

(C++ member), 181
muSpectre::MaterialBase::list_fields (C++

function), 181
muSpectre::MaterialBase::material_dimension

(C++ member), 181
muSpectre::MaterialBase::MaterialBase (C++

function), 179, 180
muSpectre::MaterialBase::name (C++ member),

181
muSpectre::MaterialBase::operator= (C++ func-

tion), 180
muSpectre::MaterialBase::save_history_variables

(C++ function), 180
muSpectre::MaterialBase::size (C++ function),

181
muSpectre::MaterialError (C++ class), 181
muSpectre::MaterialError::MaterialError

(C++ function), 182
muSpectre::MaterialEvaluator (C++ class), 182
muSpectre::MaterialEvaluator::~MaterialEvaluator

(C++ function), 183
muSpectre::MaterialEvaluator::check_init

(C++ function), 183
muSpectre::MaterialEvaluator::collection

(C++ member), 183
muSpectre::MaterialEvaluator::estimate_tangent

(C++ function), 183
muSpectre::MaterialEvaluator::evaluate_stress

(C++ function), 183
muSpectre::MaterialEvaluator::evaluate_stress_tangent

(C++ function), 183
muSpectre::MaterialEvaluator::FieldColl_t

(C++ type), 182
muSpectre::MaterialEvaluator::initialise

(C++ function), 183
muSpectre::MaterialEvaluator::is_initialised

(C++ member), 184
muSpectre::MaterialEvaluator::material (C++

member), 183
muSpectre::MaterialEvaluator::MaterialEvaluator

(C++ function), 182, 183
muSpectre::MaterialEvaluator::operator=

(C++ function), 183
muSpectre::MaterialEvaluator::save_history_variables

(C++ function), 183
muSpectre::MaterialEvaluator::strain (C++

member), 183
muSpectre::MaterialEvaluator::stress (C++

member), 184
muSpectre::MaterialEvaluator::T2_const_map

(C++ type), 182
muSpectre::MaterialEvaluator::T2_map (C++

428 Index

µSpectre Documentation, Release v0.1

type), 182
muSpectre::MaterialEvaluator::T2_t (C++ type),

182
muSpectre::MaterialEvaluator::T4_const_map

(C++ type), 182
muSpectre::MaterialEvaluator::T4_map (C++

type), 182
muSpectre::MaterialEvaluator::T4_t (C++ type),

182
muSpectre::MaterialEvaluator::tangent (C++

member), 184
muSpectre::MaterialHyperElastoPlastic1 (C++

class), 184
muSpectre::MaterialHyperElastoPlastic1::~MaterialHyperElastoPlastic1

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::be_prev_field

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::C

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::C_holder

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::evaluate_stress

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::evaluate_stress_tangent

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::F_prev_field

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::get_be_prev_field

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::get_F_prev_field

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::get_plast_flow_field

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::H

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::Hooke

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::initialise

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::K

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::lambda

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::MaterialHyperElastoPlastic1

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::mu

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::operator=

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::Parent

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::plast_flow_field

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::poisson

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::save_history_variables

(C++ function), 185
muSpectre::MaterialHyperElastoPlastic1::ScalarStRef_t

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::stress_n_internals_worker

(C++ function), 186
muSpectre::MaterialHyperElastoPlastic1::T2_t

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::T2StRef_t

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::T4_t

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::tau_y0

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic1::traits

(C++ type), 184
muSpectre::MaterialHyperElastoPlastic1::Worker_t

(C++ type), 186
muSpectre::MaterialHyperElastoPlastic1::young

(C++ member), 186
muSpectre::MaterialHyperElastoPlastic2 (C++

class), 187
muSpectre::MaterialHyperElastoPlastic2::~MaterialHyperElastoPlastic2

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::add_pixel

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::be_prev_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::evaluate_stress

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::evaluate_stress_tangent

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::F_prev_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::Field_t

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::FlowField_ref

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::FlowField_t

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::get_be_prev_field

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::get_F_prev_field

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::get_plast_flow_field

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::H_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::Hooke

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::initialise

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::K_field

Index 429

µSpectre Documentation, Release v0.1

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::lambda_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::MaterialHyperElastoPlastic2

(C++ function), 187, 188
muSpectre::MaterialHyperElastoPlastic2::mu_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::operator=

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::Parent

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::plast_flow_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::PrevStrain_ref

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::PrevStrain_t

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::save_history_variables

(C++ function), 188
muSpectre::MaterialHyperElastoPlastic2::stress_n_internals_worker

(C++ function), 189
muSpectre::MaterialHyperElastoPlastic2::T2_t

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::T4_t

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::tau_y0_field

(C++ member), 189
muSpectre::MaterialHyperElastoPlastic2::traits

(C++ type), 187
muSpectre::MaterialHyperElastoPlastic2::Worker_t

(C++ type), 189
muSpectre::MaterialLaminate (C++ class), 189
muSpectre::MaterialLaminate::~MaterialLaminate

(C++ function), 191
muSpectre::MaterialLaminate::add_pixel (C++

function), 191, 192
muSpectre::MaterialLaminate::add_pixels_precipitate

(C++ function), 192
muSpectre::MaterialLaminate::compute_stresses

(C++ function), 191
muSpectre::MaterialLaminate::compute_stresses_tangent

(C++ function), 191
muSpectre::MaterialLaminate::compute_stresses_worker

(C++ function), 192
muSpectre::MaterialLaminate::constitutive_law

(C++ function), 191
muSpectre::MaterialLaminate::constitutive_law_dynamic

(C++ function), 192
muSpectre::MaterialLaminate::constitutive_law_tangent

(C++ function), 191
muSpectre::MaterialLaminate::DynMatrix_t

(C++ type), 190
muSpectre::MaterialLaminate::evaluate_stress

(C++ function), 191

muSpectre::MaterialLaminate::evaluate_stress_tangent
(C++ function), 191

muSpectre::MaterialLaminate::make (C++ func-
tion), 192

muSpectre::MaterialLaminate::make_evaluator
(C++ function), 192

muSpectre::MaterialLaminate::MappedScalarField_t
(C++ type), 190

muSpectre::MaterialLaminate::MappedVectorField_t
(C++ type), 190

muSpectre::MaterialLaminate::MatBase_t (C++
type), 190

muSpectre::MaterialLaminate::material_left_vector
(C++ member), 193

muSpectre::MaterialLaminate::material_right_vector
(C++ member), 193

muSpectre::MaterialLaminate::MaterialLaminate
(C++ function), 191

muSpectre::MaterialLaminate::MatPtr_t (C++
type), 190

muSpectre::MaterialLaminate::NeedTangent
(C++ type), 190

muSpectre::MaterialLaminate::normal_vector_field
(C++ member), 193

muSpectre::MaterialLaminate::Parent (C++
type), 190

muSpectre::MaterialLaminate::RealField (C++
type), 190

muSpectre::MaterialLaminate::ScalarField_t
(C++ type), 190

muSpectre::MaterialLaminate::ScalarFieldMap_t
(C++ type), 190

muSpectre::MaterialLaminate::Stiffness_t
(C++ type), 190

muSpectre::MaterialLaminate::Strain_t (C++
type), 190

muSpectre::MaterialLaminate::Stress_t (C++
type), 190

muSpectre::MaterialLaminate::T2_t (C++ type),
190

muSpectre::MaterialLaminate::T4_t (C++ type),
190

muSpectre::MaterialLaminate::traits (C++
type), 190

muSpectre::MaterialLaminate::VectorField_t
(C++ type), 190

muSpectre::MaterialLaminate::VectorFieldMap_t
(C++ type), 190

muSpectre::MaterialLaminate::volume_ratio_field
(C++ member), 193

muSpectre::MaterialLinearAnisotropic (C++
class), 193

muSpectre::MaterialLinearAnisotropic::~MaterialLinearAnisotropic
(C++ function), 193

430 Index

µSpectre Documentation, Release v0.1

muSpectre::MaterialLinearAnisotropic::C
(C++ member), 194

muSpectre::MaterialLinearAnisotropic::C_holder
(C++ member), 194

muSpectre::MaterialLinearAnisotropic::c_maker
(C++ function), 194

muSpectre::MaterialLinearAnisotropic::evaluate_stress
(C++ function), 194

muSpectre::MaterialLinearAnisotropic::evaluate_stress_tangent
(C++ function), 194

muSpectre::MaterialLinearAnisotropic::Hooke
(C++ type), 193

muSpectre::MaterialLinearAnisotropic::MaterialLinearAnisotropic
(C++ function), 193

muSpectre::MaterialLinearAnisotropic::Parent
(C++ type), 193

muSpectre::MaterialLinearAnisotropic::Stiffness_t
(C++ type), 193

muSpectre::MaterialLinearAnisotropic::traits
(C++ type), 193

muSpectre::MaterialLinearElastic1 (C++ class),
194

muSpectre::MaterialLinearElastic1::~MaterialLinearElastic1
(C++ function), 195

muSpectre::MaterialLinearElastic1::C (C++
member), 196

muSpectre::MaterialLinearElastic1::C_holder
(C++ member), 196

muSpectre::MaterialLinearElastic1::evaluate_stress
(C++ function), 195

muSpectre::MaterialLinearElastic1::evaluate_stress_tangent
(C++ function), 195

muSpectre::MaterialLinearElastic1::Hooke
(C++ type), 194

muSpectre::MaterialLinearElastic1::lambda
(C++ member), 195

muSpectre::MaterialLinearElastic1::MaterialLinearElastic1
(C++ function), 195

muSpectre::MaterialLinearElastic1::mu (C++
member), 196

muSpectre::MaterialLinearElastic1::operator=
(C++ function), 195

muSpectre::MaterialLinearElastic1::Parent
(C++ type), 194

muSpectre::MaterialLinearElastic1::poisson
(C++ member), 195

muSpectre::MaterialLinearElastic1::Stiffness_t
(C++ type), 194

muSpectre::MaterialLinearElastic1::traits
(C++ type), 194

muSpectre::MaterialLinearElastic1::young
(C++ member), 195

muSpectre::MaterialLinearElastic2 (C++ class),
196

muSpectre::MaterialLinearElastic2::~MaterialLinearElastic2
(C++ function), 196

muSpectre::MaterialLinearElastic2::add_pixel
(C++ function), 197

muSpectre::MaterialLinearElastic2::eigen_strains
(C++ member), 197

muSpectre::MaterialLinearElastic2::evaluate_stress
(C++ function), 197

muSpectre::MaterialLinearElastic2::evaluate_stress_tangent
(C++ function), 197

muSpectre::MaterialLinearElastic2::material
(C++ member), 197

muSpectre::MaterialLinearElastic2::MaterialLinearElastic2
(C++ function), 196

muSpectre::MaterialLinearElastic2::operator=
(C++ function), 196

muSpectre::MaterialLinearElastic2::Parent
(C++ type), 196

muSpectre::MaterialLinearElastic2::StrainTensor
(C++ type), 196

muSpectre::MaterialLinearElastic2::traits
(C++ type), 196

muSpectre::MaterialLinearElastic3 (C++ class),
197

muSpectre::MaterialLinearElastic3::~MaterialLinearElastic3
(C++ function), 198

muSpectre::MaterialLinearElastic3::add_pixel
(C++ function), 199

muSpectre::MaterialLinearElastic3::C_field
(C++ member), 199

muSpectre::MaterialLinearElastic3::evaluate_stress
(C++ function), 198, 199

muSpectre::MaterialLinearElastic3::evaluate_stress_tangent
(C++ function), 198, 199

muSpectre::MaterialLinearElastic3::Hooke
(C++ type), 197

muSpectre::MaterialLinearElastic3::MaterialLinearElastic3
(C++ function), 198

muSpectre::MaterialLinearElastic3::NeedTangent
(C++ type), 197

muSpectre::MaterialLinearElastic3::operator=
(C++ function), 198

muSpectre::MaterialLinearElastic3::Parent
(C++ type), 197

muSpectre::MaterialLinearElastic3::StiffnessField_t
(C++ type), 198

muSpectre::MaterialLinearElastic3::traits
(C++ type), 197

muSpectre::MaterialLinearElastic4 (C++ class),
199

muSpectre::MaterialLinearElastic4::~MaterialLinearElastic4
(C++ function), 200

muSpectre::MaterialLinearElastic4::add_pixel
(C++ function), 200, 201

Index 431

µSpectre Documentation, Release v0.1

muSpectre::MaterialLinearElastic4::evaluate_stress
(C++ function), 200, 201

muSpectre::MaterialLinearElastic4::evaluate_stress_tangent
(C++ function), 200, 201

muSpectre::MaterialLinearElastic4::Field_t
(C++ type), 199

muSpectre::MaterialLinearElastic4::Hooke
(C++ type), 199

muSpectre::MaterialLinearElastic4::lambda_field
(C++ member), 201

muSpectre::MaterialLinearElastic4::MaterialLinearElastic4
(C++ function), 200

muSpectre::MaterialLinearElastic4::mu_field
(C++ member), 201

muSpectre::MaterialLinearElastic4::NeedTangent
(C++ type), 199

muSpectre::MaterialLinearElastic4::operator=
(C++ function), 200

muSpectre::MaterialLinearElastic4::Parent
(C++ type), 199

muSpectre::MaterialLinearElastic4::Stiffness_t
(C++ type), 199

muSpectre::MaterialLinearElastic4::traits
(C++ type), 199

muSpectre::MaterialLinearElasticGeneric1
(C++ class), 201

muSpectre::MaterialLinearElasticGeneric1::~MaterialLinearElasticGeneric1
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::C
(C++ member), 203

muSpectre::MaterialLinearElasticGeneric1::C_holder
(C++ member), 203

muSpectre::MaterialLinearElasticGeneric1::CInput_t
(C++ type), 201

muSpectre::MaterialLinearElasticGeneric1::evaluate_stress
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::evaluate_stress_tangent
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::get_C
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::make_C_from_C_voigt
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::MaterialLinearElasticGeneric1
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::operator=
(C++ function), 202

muSpectre::MaterialLinearElasticGeneric1::Parent
(C++ type), 201

muSpectre::MaterialLinearElasticGeneric2
(C++ class), 203

muSpectre::MaterialLinearElasticGeneric2::~MaterialLinearElasticGeneric2
(C++ function), 203

muSpectre::MaterialLinearElasticGeneric2::add_pixel
(C++ function), 204

muSpectre::MaterialLinearElasticGeneric2::CInput_t
(C++ type), 204

muSpectre::MaterialLinearElasticGeneric2::eigen_field
(C++ member), 204

muSpectre::MaterialLinearElasticGeneric2::evaluate_stress
(C++ function), 203, 204

muSpectre::MaterialLinearElasticGeneric2::evaluate_stress_tangent
(C++ function), 203, 204

muSpectre::MaterialLinearElasticGeneric2::get_C
(C++ function), 204

muSpectre::MaterialLinearElasticGeneric2::Law_t
(C++ type), 204

muSpectre::MaterialLinearElasticGeneric2::MaterialLinearElasticGeneric2
(C++ function), 203

muSpectre::MaterialLinearElasticGeneric2::operator=
(C++ function), 203

muSpectre::MaterialLinearElasticGeneric2::Parent
(C++ type), 204

muSpectre::MaterialLinearElasticGeneric2::StrainTensor
(C++ type), 204

muSpectre::MaterialLinearElasticGeneric2::traits
(C++ type), 205

muSpectre::MaterialLinearElasticGeneric2::worker
(C++ member), 204

muSpectre::MaterialLinearOrthotropic (C++
class), 205

muSpectre::MaterialLinearOrthotropic::~MaterialLinearOrthotropic
(C++ function), 205

muSpectre::MaterialLinearOrthotropic::input_c_maker
(C++ function), 206

muSpectre::MaterialLinearOrthotropic::make
(C++ function), 205

muSpectre::MaterialLinearOrthotropic::MaterialLinearOrthotropic
(C++ function), 205

muSpectre::MaterialLinearOrthotropic::output_size
(C++ member), 206

muSpectre::MaterialLinearOrthotropic::Parent
(C++ type), 205

muSpectre::MaterialLinearOrthotropic::ret_flag
(C++ member), 206

muSpectre::MaterialLinearOrthotropic::Stiffness_t
(C++ type), 205

muSpectre::MaterialLinearOrthotropic::traits
(C++ type), 205

muSpectre::MaterialMuSpectre (C++ class), 206
muSpectre::MaterialMuSpectre::~MaterialMuSpectre

(C++ function), 207
muSpectre::MaterialMuSpectre::add_pixel_split

(C++ function), 207
muSpectre::MaterialMuSpectre::add_split_pixels_precipitate

(C++ function), 207
muSpectre::MaterialMuSpectre::compute_stresses

(C++ function), 207
muSpectre::MaterialMuSpectre::compute_stresses_tangent

432 Index

µSpectre Documentation, Release v0.1

(C++ function), 207
muSpectre::MaterialMuSpectre::compute_stresses_worker

(C++ function), 208
muSpectre::MaterialMuSpectre::constitutive_law_dynamic

(C++ function), 207
muSpectre::MaterialMuSpectre::DynMatrix_t

(C++ type), 207
muSpectre::MaterialMuSpectre::make (C++ func-

tion), 208
muSpectre::MaterialMuSpectre::make_evaluator

(C++ function), 208
muSpectre::MaterialMuSpectre::MaterialDimension

(C++ function), 208
muSpectre::MaterialMuSpectre::MaterialMuSpectre

(C++ function), 207
muSpectre::MaterialMuSpectre::NeedTangent

(C++ type), 206
muSpectre::MaterialMuSpectre::operator=

(C++ function), 207
muSpectre::MaterialMuSpectre::Parent (C++

type), 206
muSpectre::MaterialMuSpectre::Stiffness_t

(C++ type), 207
muSpectre::MaterialMuSpectre::Strain_t (C++

type), 207
muSpectre::MaterialMuSpectre::Stress_t (C++

type), 207
muSpectre::MaterialMuSpectre::traits (C++

type), 206
muSpectre::MaterialMuSpectre_traits (C++

struct), 208
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>

(C++ struct), 208
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>::strain_measure

(C++ member), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>::StrainMap_t

(C++ type), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>::stress_measure

(C++ member), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>::StressMap_t

(C++ type), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic1<DimM>>::TangentMap_t

(C++ type), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>

(C++ struct), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>::strain_measure

(C++ member), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>::StrainMap_t

(C++ type), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>::stress_measure

(C++ member), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>::StressMap_t

(C++ type), 209
muSpectre::MaterialMuSpectre_traits<MaterialHyperElastoPlastic2<DimM>>::TangentMap_t

(C++ type), 209
muSpectre::MaterialMuSpectre_traits<MaterialLaminate<DimM>>

(C++ struct), 209
muSpectre::MaterialMuSpectre_traits<MaterialLaminate<DimM>>::strain_measure

(C++ member), 210
muSpectre::MaterialMuSpectre_traits<MaterialLaminate<DimM>>::StrainMap_t

(C++ type), 210
muSpectre::MaterialMuSpectre_traits<MaterialLaminate<DimM>>::stress_measure

(C++ member), 210
muSpectre::MaterialMuSpectre_traits<MaterialLaminate<DimM>>::StressMap_t

(C++ type), 210
muSpectre::MaterialMuSpectre_traits<MaterialLaminate<DimM>>::TangentMap_t

(C++ type), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>

(C++ struct), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>::strain_measure

(C++ member), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>::StrainMap_t

(C++ type), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>::stress_measure

(C++ member), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>::StressMap_t

(C++ type), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearAnisotropic<DimM>>::TangentMap_t

(C++ type), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>

(C++ struct), 210
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>::strain_measure

(C++ member), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>::StrainMap_t

(C++ type), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>::stress_measure

(C++ member), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>::StressMap_t

(C++ type), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic1<DimM>>::TangentMap_t

(C++ type), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>

(C++ struct), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>::strain_measure

(C++ member), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>::StrainMap_t

(C++ type), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>::stress_measure

(C++ member), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>::StressMap_t

(C++ type), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic2<DimM>>::TangentMap_t

(C++ type), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>

(C++ struct), 211
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>::strain_measure

(C++ member), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>::StrainMap_t

Index 433

µSpectre Documentation, Release v0.1

(C++ type), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>::stress_measure

(C++ member), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>::StressMap_t

(C++ type), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic3<DimM>>::TangentMap_t

(C++ type), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>

(C++ struct), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>::strain_measure

(C++ member), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>::StrainMap_t

(C++ type), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>::stress_measure

(C++ member), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>::StressMap_t

(C++ type), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElastic4<DimM>>::TangentMap_t

(C++ type), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>

(C++ struct), 212
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>::strain_measure

(C++ member), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>::StrainMap_t

(C++ type), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>::stress_measure

(C++ member), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>::StressMap_t

(C++ type), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric1<DimM>>::TangentMap_t

(C++ type), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>

(C++ struct), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>::strain_measure

(C++ member), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>::StrainMap_t

(C++ type), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>::stress_measure

(C++ member), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>::StressMap_t

(C++ type), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearElasticGeneric2<DimM>>::TangentMap_t

(C++ type), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>

(C++ struct), 213
muSpectre::MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>::strain_measure

(C++ member), 214
muSpectre::MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>::StrainMap_t

(C++ type), 214
muSpectre::MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>::stress_measure

(C++ member), 214
muSpectre::MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>::StressMap_t

(C++ type), 214
muSpectre::MaterialMuSpectre_traits<MaterialLinearOrthotropic<DimM>>::TangentMap_t

(C++ type), 214
muSpectre::MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>

(C++ struct), 214
muSpectre::MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>::strain_measure

(C++ member), 215
muSpectre::MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>::StrainMap_t

(C++ type), 214
muSpectre::MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>::stress_measure

(C++ member), 215
muSpectre::MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>::StressMap_t

(C++ type), 214
muSpectre::MaterialMuSpectre_traits<MaterialStochasticPlasticity<DimM>>::TangentMap_t

(C++ type), 214
muSpectre::MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM,

StrainMIn, StressMOut>> (C++ struct),
215

muSpectre::MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM,
StrainMIn, StressMOut>>::strain_measure
(C++ member), 215

muSpectre::MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM,
StrainMIn, StressMOut>>::StrainMap_t
(C++ type), 215

muSpectre::MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM,
StrainMIn, StressMOut>>::stress_measure
(C++ member), 215

muSpectre::MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM,
StrainMIn, StressMOut>>::StressMap_t
(C++ type), 215

muSpectre::MaterialMuSpectre_traits<STMaterialLinearElasticGeneric1<DimM,
StrainMIn, StressMOut>>::TangentMap_t
(C++ type), 215

muSpectre::MaterialStochasticPlasticity
(C++ class), 215

muSpectre::MaterialStochasticPlasticity::~MaterialStochasticPlasticity
(C++ function), 216

muSpectre::MaterialStochasticPlasticity::add_pixel
(C++ function), 217

muSpectre::MaterialStochasticPlasticity::archive_overloaded_quad_pts
(C++ function), 217

muSpectre::MaterialStochasticPlasticity::eigen_strain_field
(C++ member), 218

muSpectre::MaterialStochasticPlasticity::EigenStrainArg_t
(C++ type), 216

muSpectre::MaterialStochasticPlasticity::evaluate_stress
(C++ function), 216, 218

muSpectre::MaterialStochasticPlasticity::evaluate_stress_tangent
(C++ function), 216–218

muSpectre::MaterialStochasticPlasticity::Field_t
(C++ type), 218

muSpectre::MaterialStochasticPlasticity::get_eigen_strain
(C++ function), 217

muSpectre::MaterialStochasticPlasticity::get_plastic_increment
(C++ function), 217

muSpectre::MaterialStochasticPlasticity::get_stress_threshold

434 Index

µSpectre Documentation, Release v0.1

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::Hooke

(C++ type), 216
muSpectre::MaterialStochasticPlasticity::identify_overloaded_quad_pts

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::lambda_field

(C++ member), 218
muSpectre::MaterialStochasticPlasticity::LTensor_Field_t

(C++ type), 218
muSpectre::MaterialStochasticPlasticity::MaterialStochasticPlasticity

(C++ function), 216
muSpectre::MaterialStochasticPlasticity::mu_field

(C++ member), 218
muSpectre::MaterialStochasticPlasticity::operator=

(C++ function), 216
muSpectre::MaterialStochasticPlasticity::overloaded_quad_pts

(C++ member), 218
muSpectre::MaterialStochasticPlasticity::Parent

(C++ type), 216
muSpectre::MaterialStochasticPlasticity::plastic_increment_field

(C++ member), 218
muSpectre::MaterialStochasticPlasticity::relax_overloaded_quad_pts

(C++ function), 218
muSpectre::MaterialStochasticPlasticity::reset_overloaded_quad_pts

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::set_eigen_strain

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::set_plastic_increment

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::set_stress_threshold

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::stress_threshold_field

(C++ member), 218
muSpectre::MaterialStochasticPlasticity::traits

(C++ type), 216
muSpectre::MaterialStochasticPlasticity::update_eigen_strain_field

(C++ function), 217
muSpectre::MaterialStochasticPlasticity::Vector_t

(C++ type), 216
muSpectre::MatrixXXc (C++ type), 315
muSpectre::MatTB (C++ type), 322
muSpectre::MatTB::compute_deviatoric_stress

(C++ function), 323
muSpectre::MatTB::compute_equivalent_von_Mises_stress

(C++ function), 323
muSpectre::MatTB::compute_numerical_tangent

(C++ function), 323
muSpectre::MatTB::constitutive_law (C++ func-

tion), 323
muSpectre::MatTB::constitutive_law_tangent

(C++ function), 323
muSpectre::MatTB::convert_elastic_modulus

(C++ function), 323
muSpectre::MatTB::convert_strain (C++ func-

tion), 323
muSpectre::MatTB::Hooke (C++ struct), 148
muSpectre::MatTB::Hooke::compute_C (C++ func-

tion), 149
muSpectre::MatTB::Hooke::compute_C_T4 (C++

function), 149
muSpectre::MatTB::Hooke::compute_K (C++ func-

tion), 149
muSpectre::MatTB::Hooke::compute_lambda

(C++ function), 149
muSpectre::MatTB::Hooke::compute_mu (C++

function), 149
muSpectre::MatTB::Hooke::evaluate_stress

(C++ function), 149, 150
muSpectre::MatTB::internal (C++ type), 324
muSpectre::MatTB::internal::Converter (C++

struct), 111
muSpectre::MatTB::internal::Converter::compute

(C++ function), 111
muSpectre::MatTB::internal::Converter<ElasticModulus::Bulk,

ElasticModulus::lambda,
ElasticModulus::Shear> (C++ struct),
111

muSpectre::MatTB::internal::Converter<ElasticModulus::Bulk,
ElasticModulus::lambda,
ElasticModulus::Shear>::compute
(C++ function), 112

muSpectre::MatTB::internal::Converter<ElasticModulus::Bulk,
ElasticModulus::Young,
ElasticModulus::Poisson> (C++ struct),
112

muSpectre::MatTB::internal::Converter<ElasticModulus::Bulk,
ElasticModulus::Young,
ElasticModulus::Poisson>::compute
(C++ function), 112

muSpectre::MatTB::internal::Converter<ElasticModulus::lambda,
ElasticModulus::Bulk,
ElasticModulus::Shear> (C++ struct),
112

muSpectre::MatTB::internal::Converter<ElasticModulus::lambda,
ElasticModulus::Bulk,
ElasticModulus::Shear>::compute
(C++ function), 112

muSpectre::MatTB::internal::Converter<ElasticModulus::lambda,
ElasticModulus::Young,
ElasticModulus::Poisson> (C++ struct),
112

muSpectre::MatTB::internal::Converter<ElasticModulus::lambda,
ElasticModulus::Young,
ElasticModulus::Poisson>::compute
(C++ function), 112

muSpectre::MatTB::internal::Converter<ElasticModulus::Poisson,
ElasticModulus::Bulk,
ElasticModulus::Shear> (C++ struct),

Index 435

µSpectre Documentation, Release v0.1

112
muSpectre::MatTB::internal::Converter<ElasticModulus::Poisson,

ElasticModulus::Bulk,
ElasticModulus::Shear>::compute
(C++ function), 112

muSpectre::MatTB::internal::Converter<ElasticModulus::Shear,
ElasticModulus::Young,
ElasticModulus::Poisson> (C++ struct),
112

muSpectre::MatTB::internal::Converter<ElasticModulus::Shear,
ElasticModulus::Young,
ElasticModulus::Poisson>::compute
(C++ function), 113

muSpectre::MatTB::internal::Converter<ElasticModulus::Young,
ElasticModulus::Bulk,
ElasticModulus::Shear> (C++ struct),
113

muSpectre::MatTB::internal::Converter<ElasticModulus::Young,
ElasticModulus::Bulk,
ElasticModulus::Shear>::compute
(C++ function), 113

muSpectre::MatTB::internal::Converter<ElasticModulus::Young,
ElasticModulus::lambda,
ElasticModulus::Shear> (C++ struct),
113

muSpectre::MatTB::internal::Converter<ElasticModulus::Young,
ElasticModulus::lambda,
ElasticModulus::Shear>::compute
(C++ function), 113

muSpectre::MatTB::internal::Converter<Out,
In, Out> (C++ struct), 113

muSpectre::MatTB::internal::Converter<Out,
In, Out>::compute (C++ function), 113

muSpectre::MatTB::internal::Converter<Out,
Out, In> (C++ struct), 113

muSpectre::MatTB::internal::Converter<Out,
Out, In>::compute (C++ function), 113

muSpectre::MatTB::internal::ConvertStrain
(C++ struct), 113

muSpectre::MatTB::internal::ConvertStrain::compute
(C++ function), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,
StrainMeasure::GreenLagrange> (C++
struct), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,
StrainMeasure::GreenLagrange>::compute
(C++ function), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,
StrainMeasure::LCauchyGreen> (C++
struct), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,
StrainMeasure::LCauchyGreen>::compute
(C++ function), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,

StrainMeasure::Log> (C++ struct), 114
muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,

StrainMeasure::Log>::compute (C++
function), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,
StrainMeasure::RCauchyGreen> (C++
struct), 114

muSpectre::MatTB::internal::ConvertStrain<StrainMeasure::Gradient,
StrainMeasure::RCauchyGreen>::compute
(C++ function), 115

muSpectre::MatTB::internal::Kirchhoff_stress
(C++ struct), 167

muSpectre::MatTB::internal::Kirchhoff_stress::compute
(C++ function), 168

muSpectre::MatTB::internal::Kirchhoff_stress<Dim,
StressMeasure::PK2, StrainM> (C++
struct), 168

muSpectre::MatTB::internal::Kirchhoff_stress<Dim,
StressMeasure::PK2,
StrainM>::compute (C++ function), 168

muSpectre::MatTB::internal::MaterialStressEvaluator
(C++ struct), 219

muSpectre::MatTB::internal::MaterialStressEvaluator::compute
(C++ function), 219

muSpectre::MatTB::internal::MaterialStressEvaluator<Formulation::finite_strain>
(C++ struct), 219

muSpectre::MatTB::internal::MaterialStressEvaluator<Formulation::finite_strain>::compute
(C++ function), 219

muSpectre::MatTB::internal::MaterialStressTangentEvaluator
(C++ struct), 220

muSpectre::MatTB::internal::MaterialStressTangentEvaluator::compute
(C++ function), 220

muSpectre::MatTB::internal::MaterialStressTangentEvaluator<Formulation::finite_strain>
(C++ struct), 220

muSpectre::MatTB::internal::MaterialStressTangentEvaluator<Formulation::finite_strain>::compute
(C++ function), 220

muSpectre::MatTB::internal::NumericalTangentHelper
(C++ struct), 222

muSpectre::MatTB::internal::NumericalTangentHelper::compute
(C++ function), 223

muSpectre::MatTB::internal::NumericalTangentHelper::T2_t
(C++ type), 222

muSpectre::MatTB::internal::NumericalTangentHelper::T2_vec
(C++ type), 222

muSpectre::MatTB::internal::NumericalTangentHelper::T4_t
(C++ type), 222

muSpectre::MatTB::internal::NumericalTangentHelper<Dim,
FiniteDiff::centred> (C++ struct), 223

muSpectre::MatTB::internal::NumericalTangentHelper<Dim,
FiniteDiff::centred>::compute (C++
function), 223

muSpectre::MatTB::internal::NumericalTangentHelper<Dim,
FiniteDiff::centred>::T2_t (C++ type),
223

436 Index

µSpectre Documentation, Release v0.1

muSpectre::MatTB::internal::NumericalTangentHelper<Dim,
FiniteDiff::centred>::T2_vec (C++
type), 223

muSpectre::MatTB::internal::NumericalTangentHelper<Dim,
FiniteDiff::centred>::T4_t (C++ type),
223

muSpectre::MatTB::internal::PK1_stress (C++
struct), 229

muSpectre::MatTB::internal::PK1_stress::compute
(C++ function), 230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff, StrainM>
(C++ struct), 230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainM>::compute (C++ function), 230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainMeasure::Gradient> (C++ struct),
230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainMeasure::Gradient>::compute
(C++ function), 230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainMeasure::Gradient>::Parent
(C++ type), 230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainMeasure::GreenLagrange> (C++
struct), 230

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainMeasure::GreenLagrange>::compute
(C++ function), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::Kirchhoff,
StrainMeasure::GreenLagrange>::Parent
(C++ type), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK1, StrainM> (C++
struct), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK1,
StrainM>::compute (C++ function), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK1,
StrainMeasure::Gradient> (C++ struct),
231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK1,
StrainMeasure::Gradient>::compute
(C++ function), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK1,
StrainMeasure::Gradient>::Parent
(C++ type), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2, StrainM> (C++
struct), 231

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainM>::compute (C++ function), 232

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainMeasure::Gradient> (C++ struct),
232

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainMeasure::Gradient>::compute
(C++ function), 232

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainMeasure::Gradient>::Parent
(C++ type), 232

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainMeasure::GreenLagrange> (C++
struct), 232

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainMeasure::GreenLagrange>::compute
(C++ function), 232

muSpectre::MatTB::internal::PK1_stress<Dim,
StressMeasure::PK2,
StrainMeasure::GreenLagrange>::Parent
(C++ type), 232

muSpectre::MatTB::internal::PK2_stress (C++
struct), 232

muSpectre::MatTB::internal::PK2_stress::compute
(C++ function), 233

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::Kirchhoff, StrainM>
(C++ struct), 233

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::Kirchhoff,
StrainM>::compute (C++ function), 233

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK1, StrainM> (C++
struct), 233

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK1,
StrainM>::compute (C++ function), 233

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK1,
StrainMeasure::Gradient> (C++ struct),
233

Index 437

µSpectre Documentation, Release v0.1

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK1,
StrainMeasure::Gradient>::compute
(C++ function), 234

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK1,
StrainMeasure::Gradient>::Parent
(C++ type), 233

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK2, StrainM> (C++
struct), 234

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK2,
StrainM>::compute (C++ function), 234

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK2,
StrainMeasure::GreenLagrange> (C++
struct), 234

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK2,
StrainMeasure::GreenLagrange>::compute
(C++ function), 234

muSpectre::MatTB::internal::PK2_stress<Dim,
StressMeasure::PK2,
StrainMeasure::GreenLagrange>::Parent
(C++ type), 234

muSpectre::MatTB::Kirchhoff_stress (C++ func-
tion), 324

muSpectre::MatTB::make_C_from_C_voigt (C++
function), 323

muSpectre::MatTB::MaterialsToolboxError
(C++ class), 218

muSpectre::MatTB::MaterialsToolboxError::MaterialsToolboxError
(C++ function), 219

muSpectre::MatTB::NeedTangent (C++ enum), 322
muSpectre::MatTB::NeedTangent::no (C++ enu-

merator), 322
muSpectre::MatTB::NeedTangent::yes (C++ enu-

merator), 322
muSpectre::MatTB::OperationAddition (C++

struct), 225
muSpectre::MatTB::OperationAddition::OperationAddition

(C++ function), 225
muSpectre::MatTB::OperationAddition::operator()

(C++ function), 225
muSpectre::MatTB::OperationAddition::ratio

(C++ member), 225
muSpectre::MatTB::OperationAssignment (C++

struct), 225
muSpectre::MatTB::OperationAssignment::operator()

(C++ function), 225
muSpectre::MatTB::PK1_stress (C++ function), 323
muSpectre::MatTB::PK2_stress (C++ function),

323, 324

muSpectre::modulo (C++ function), 321
muSpectre::newton_cg (C++ function), 321, 322
muSpectre::Node (C++ class), 220
muSpectre::Node::~Node (C++ function), 221
muSpectre::Node::check_node (C++ function), 221
muSpectre::Node::check_node_helper (C++ func-

tion), 221
muSpectre::Node::children (C++ member), 222
muSpectre::Node::children_no (C++ member), 222
muSpectre::Node::Clengths (C++ member), 222
muSpectre::Node::depth (C++ member), 222
muSpectre::Node::dim (C++ member), 222
muSpectre::Node::divide_node (C++ function), 221
muSpectre::Node::divide_node_helper (C++

function), 221
muSpectre::Node::is_pixel (C++ member), 222
muSpectre::Node::Node (C++ function), 221
muSpectre::Node::origin (C++ member), 222
muSpectre::Node::Rlengths (C++ member), 222
muSpectre::Node::root_node (C++ member), 222
muSpectre::Node::RootNode_t (C++ type), 221
muSpectre::Node::split_node (C++ function), 221
muSpectre::Node::split_node_helper (C++ func-

tion), 221
muSpectre::Node::Vector_t (C++ type), 221
muSpectre::operator< (C++ function), 321
muSpectre::operator<< (C++ function), 321
muSpectre::OptimizeResult (C++ struct), 225
muSpectre::OptimizeResult::formulation (C++

member), 226
muSpectre::OptimizeResult::grad (C++ member),

225
muSpectre::OptimizeResult::message (C++ mem-

ber), 225
muSpectre::OptimizeResult::nb_fev (C++ mem-

ber), 226
muSpectre::OptimizeResult::nb_it (C++ mem-

ber), 225
muSpectre::OptimizeResult::status (C++ mem-

ber), 225
muSpectre::OptimizeResult::stress (C++ mem-

ber), 225
muSpectre::OptimizeResult::success (C++ mem-

ber), 225
muSpectre::PrecipitateIntersectBase (C++

class), 234
muSpectre::PrecipitateIntersectBase::correct_dimension

(C++ function), 234
muSpectre::PrecipitateIntersectBase::intersect_precipitate

(C++ function), 235
muSpectre::Projection_traits (C++ struct), 237
muSpectre::ProjectionBase (C++ class), 237
muSpectre::ProjectionBase::~ProjectionBase

(C++ function), 237

438 Index

µSpectre Documentation, Release v0.1

muSpectre::ProjectionBase::apply_projection
(C++ function), 238

muSpectre::ProjectionBase::domain_lengths
(C++ member), 239

muSpectre::ProjectionBase::fft_engine (C++
member), 239

muSpectre::ProjectionBase::Field_t (C++ type),
237

muSpectre::ProjectionBase::form (C++ member),
239

muSpectre::ProjectionBase::get_communicator
(C++ function), 238

muSpectre::ProjectionBase::get_dim (C++ func-
tion), 238

muSpectre::ProjectionBase::get_domain_lengths
(C++ function), 238

muSpectre::ProjectionBase::get_fft_engine
(C++ function), 238

muSpectre::ProjectionBase::get_formulation
(C++ function), 238

muSpectre::ProjectionBase::get_nb_components
(C++ function), 238

muSpectre::ProjectionBase::get_nb_domain_grid_pts
(C++ function), 238

muSpectre::ProjectionBase::get_nb_quad (C++
function), 238

muSpectre::ProjectionBase::get_nb_subdomain_grid_pts
(C++ function), 238

muSpectre::ProjectionBase::get_pixel_lengths
(C++ function), 238

muSpectre::ProjectionBase::get_strain_shape
(C++ function), 238

muSpectre::ProjectionBase::get_subdomain_locations
(C++ function), 238

muSpectre::ProjectionBase::GFieldCollection_t
(C++ type), 237

muSpectre::ProjectionBase::initialise (C++
function), 238

muSpectre::ProjectionBase::iterator (C++
type), 237

muSpectre::ProjectionBase::operator= (C++
function), 237

muSpectre::ProjectionBase::projection_container
(C++ member), 239

muSpectre::ProjectionBase::ProjectionBase
(C++ function), 237

muSpectre::ProjectionBase::Vector_t (C++
type), 237

muSpectre::ProjectionDefault (C++ class), 239
muSpectre::ProjectionDefault::~ProjectionDefault

(C++ function), 240
muSpectre::ProjectionDefault::apply_projection

(C++ function), 240
muSpectre::ProjectionDefault::Ccoord (C++

type), 239
muSpectre::ProjectionDefault::Field_t (C++

type), 239
muSpectre::ProjectionDefault::get_nb_components

(C++ function), 240
muSpectre::ProjectionDefault::get_operator

(C++ function), 240
muSpectre::ProjectionDefault::get_strain_shape

(C++ function), 240
muSpectre::ProjectionDefault::Gfield (C++

member), 241
muSpectre::ProjectionDefault::GFieldCollection_t

(C++ type), 239
muSpectre::ProjectionDefault::Ghat (C++ mem-

ber), 241
muSpectre::ProjectionDefault::gradient (C++

member), 241
muSpectre::ProjectionDefault::Gradient_t

(C++ type), 239
muSpectre::ProjectionDefault::NbComponents

(C++ function), 241
muSpectre::ProjectionDefault::operator=

(C++ function), 240
muSpectre::ProjectionDefault::Parent (C++

type), 239
muSpectre::ProjectionDefault::Proj_map (C++

type), 240
muSpectre::ProjectionDefault::Proj_t (C++

type), 240
muSpectre::ProjectionDefault::ProjectionDefault

(C++ function), 240
muSpectre::ProjectionDefault::Rcoord (C++

type), 239
muSpectre::ProjectionDefault::Vector_map

(C++ type), 240
muSpectre::ProjectionDefault::Vector_t (C++

type), 239
muSpectre::ProjectionError (C++ class), 241
muSpectre::ProjectionError::ProjectionError

(C++ function), 241
muSpectre::ProjectionFiniteStrain (C++ class),

241
muSpectre::ProjectionFiniteStrain::~ProjectionFiniteStrain

(C++ function), 242
muSpectre::ProjectionFiniteStrain::Ccoord

(C++ type), 241
muSpectre::ProjectionFiniteStrain::Gradient_t

(C++ type), 241
muSpectre::ProjectionFiniteStrain::initialise

(C++ function), 242
muSpectre::ProjectionFiniteStrain::operator=

(C++ function), 242
muSpectre::ProjectionFiniteStrain::Parent

(C++ type), 241

Index 439

µSpectre Documentation, Release v0.1

muSpectre::ProjectionFiniteStrain::Proj_map
(C++ type), 241

muSpectre::ProjectionFiniteStrain::ProjectionFiniteStrain
(C++ function), 242

muSpectre::ProjectionFiniteStrain::Rcoord
(C++ type), 241

muSpectre::ProjectionFiniteStrain::Vector_map
(C++ type), 242

muSpectre::ProjectionFiniteStrainFast (C++
class), 242

muSpectre::ProjectionFiniteStrainFast::~ProjectionFiniteStrainFast
(C++ function), 243

muSpectre::ProjectionFiniteStrainFast::apply_projection
(C++ function), 243

muSpectre::ProjectionFiniteStrainFast::Ccoord
(C++ type), 242

muSpectre::ProjectionFiniteStrainFast::Field_t
(C++ type), 243

muSpectre::ProjectionFiniteStrainFast::get_nb_components
(C++ function), 244

muSpectre::ProjectionFiniteStrainFast::get_operator
(C++ function), 243

muSpectre::ProjectionFiniteStrainFast::get_strain_shape
(C++ function), 244

muSpectre::ProjectionFiniteStrainFast::Grad_map
(C++ type), 243

muSpectre::ProjectionFiniteStrainFast::gradient
(C++ member), 244

muSpectre::ProjectionFiniteStrainFast::Gradient_t
(C++ type), 242

muSpectre::ProjectionFiniteStrainFast::initialise
(C++ function), 243

muSpectre::ProjectionFiniteStrainFast::NbComponents
(C++ function), 244

muSpectre::ProjectionFiniteStrainFast::operator=
(C++ function), 243

muSpectre::ProjectionFiniteStrainFast::Parent
(C++ type), 242

muSpectre::ProjectionFiniteStrainFast::Proj_map
(C++ type), 243

muSpectre::ProjectionFiniteStrainFast::Proj_t
(C++ type), 243

muSpectre::ProjectionFiniteStrainFast::ProjectionFiniteStrainFast
(C++ function), 243

muSpectre::ProjectionFiniteStrainFast::Rcoord
(C++ type), 243

muSpectre::ProjectionFiniteStrainFast::xi_field
(C++ member), 244

muSpectre::ProjectionFiniteStrainFast::xis
(C++ member), 244

muSpectre::ProjectionSmallStrain (C++ class),
244

muSpectre::ProjectionSmallStrain::~ProjectionSmallStrain
(C++ function), 245

muSpectre::ProjectionSmallStrain::Ccoord
(C++ type), 244

muSpectre::ProjectionSmallStrain::Gradient_t
(C++ type), 244

muSpectre::ProjectionSmallStrain::initialise
(C++ function), 245

muSpectre::ProjectionSmallStrain::operator=
(C++ function), 245

muSpectre::ProjectionSmallStrain::Parent
(C++ type), 244

muSpectre::ProjectionSmallStrain::Proj_map
(C++ type), 245

muSpectre::ProjectionSmallStrain::Proj_t
(C++ type), 244

muSpectre::ProjectionSmallStrain::ProjectionSmallStrain
(C++ function), 245

muSpectre::ProjectionSmallStrain::Rcoord
(C++ type), 244

muSpectre::ProjectionSmallStrain::Vector_map
(C++ type), 245

muSpectre::RootNode (C++ class), 247
muSpectre::RootNode::~RootNode (C++ function),

248
muSpectre::RootNode::cell (C++ member), 248
muSpectre::RootNode::cell_length (C++ mem-

ber), 248
muSpectre::RootNode::cell_resolution (C++

member), 248
muSpectre::RootNode::check_root_node (C++

function), 248
muSpectre::RootNode::compute_squared_circum_square

(C++ function), 248
muSpectre::RootNode::get_intersected_pixels

(C++ function), 248
muSpectre::RootNode::get_intersected_pixels_id

(C++ function), 248
muSpectre::RootNode::get_intersection_normals

(C++ function), 248
muSpectre::RootNode::get_intersection_ratios

(C++ function), 248
muSpectre::RootNode::get_intersection_status

(C++ function), 248
muSpectre::RootNode::intersected_pixels

(C++ member), 248
muSpectre::RootNode::intersected_pixels_id

(C++ member), 248
muSpectre::RootNode::intersection_normals

(C++ member), 249
muSpectre::RootNode::intersection_ratios

(C++ member), 249
muSpectre::RootNode::intersection_state

(C++ member), 249
muSpectre::RootNode::make_max_depth (C++

function), 248

440 Index

µSpectre Documentation, Release v0.1

muSpectre::RootNode::make_max_resolution
(C++ function), 248

muSpectre::RootNode::make_root_origin (C++
function), 248

muSpectre::RootNode::max_depth (C++ member),
248

muSpectre::RootNode::max_resolution (C++
member), 248

muSpectre::RootNode::Parent (C++ type), 247
muSpectre::RootNode::pixel_lengths (C++ mem-

ber), 248
muSpectre::RootNode::precipitate_vertices

(C++ member), 248
muSpectre::RootNode::RootNode (C++ function),

247
muSpectre::RootNode::Vector_t (C++ type), 247
muSpectre::RotationOrder (C++ enum), 315
muSpectre::RotationOrder::XYXEuler (C++ enu-

merator), 315
muSpectre::RotationOrder::XYZTaitBryan (C++

enumerator), 316
muSpectre::RotationOrder::XZXEuler (C++ enu-

merator), 315
muSpectre::RotationOrder::XZYTaitBryan (C++

enumerator), 316
muSpectre::RotationOrder::YXYEuler (C++ enu-

merator), 315
muSpectre::RotationOrder::YXZTaitBryan (C++

enumerator), 316
muSpectre::RotationOrder::YZXTaitBryan (C++

enumerator), 316
muSpectre::RotationOrder::YZYEuler (C++ enu-

merator), 315
muSpectre::RotationOrder::Z (C++ enumerator),

315
muSpectre::RotationOrder::ZXYTaitBryan (C++

enumerator), 316
muSpectre::RotationOrder::ZXZEuler (C++ enu-

merator), 316
muSpectre::RotationOrder::ZYXTaitBryan (C++

enumerator), 316
muSpectre::RotationOrder::ZYZEuler (C++ enu-

merator), 315
muSpectre::RotatorAngle (C++ class), 253
muSpectre::RotatorAngle::~RotatorAngle (C++

function), 253
muSpectre::RotatorAngle::Angles_t (C++ type),

253
muSpectre::RotatorAngle::compute_rotation_matrix_angle

(C++ function), 253, 254
muSpectre::RotatorAngle::operator= (C++ func-

tion), 253
muSpectre::RotatorAngle::Parent (C++ type), 253
muSpectre::RotatorAngle::RotatorAngle (C++

function), 253
muSpectre::RotatorAngle::RotMat_t (C++ type),

253
muSpectre::RotatorBase (C++ class), 254
muSpectre::RotatorBase::~RotatorBase (C++

function), 254
muSpectre::RotatorBase::get_rot_mat (C++

function), 255
muSpectre::RotatorBase::operator= (C++ func-

tion), 254
muSpectre::RotatorBase::rot_mat (C++ member),

255
muSpectre::RotatorBase::rot_mat_holder (C++

member), 255
muSpectre::RotatorBase::rotate (C++ function),

254
muSpectre::RotatorBase::rotate_back (C++

function), 254
muSpectre::RotatorBase::RotatorBase (C++

function), 254
muSpectre::RotatorBase::RotMat_ptr (C++ type),

254
muSpectre::RotatorBase::RotMat_t (C++ type),

254
muSpectre::RotatorBase::set_rot_mat (C++

function), 255
muSpectre::RotatorNormal (C++ class), 255
muSpectre::RotatorNormal::~RotatorNormal

(C++ function), 255
muSpectre::RotatorNormal::compute_rotation_matrix_normal

(C++ function), 256
muSpectre::RotatorNormal::operator= (C++

function), 255, 256
muSpectre::RotatorNormal::Parent (C++ type),

255
muSpectre::RotatorNormal::RotatorNormal

(C++ function), 255
muSpectre::RotatorNormal::RotMat_t (C++ type),

255
muSpectre::RotatorNormal::Vec_t (C++ type), 255
muSpectre::RotatorTwoVec (C++ class), 256
muSpectre::RotatorTwoVec::~RotatorTwoVec

(C++ function), 256
muSpectre::RotatorTwoVec::compute_rotation_matrix_TwoVec

(C++ function), 257
muSpectre::RotatorTwoVec::operator= (C++

function), 256, 257
muSpectre::RotatorTwoVec::Parent (C++ type),

256
muSpectre::RotatorTwoVec::RotatorTwoVec

(C++ function), 256
muSpectre::RotatorTwoVec::RotMat_t (C++ type),

256
muSpectre::RotatorTwoVec::Vec_ptr (C++ type),

Index 441

µSpectre Documentation, Release v0.1

256
muSpectre::RotatorTwoVec::Vec_t (C++ type), 256
muSpectre::SolverBase (C++ class), 260
muSpectre::SolverBase::~SolverBase (C++ func-

tion), 261
muSpectre::SolverBase::cell (C++ member), 261
muSpectre::SolverBase::ConstVector_ref (C++

type), 260
muSpectre::SolverBase::converged (C++ mem-

ber), 261
muSpectre::SolverBase::counter (C++ member),

261
muSpectre::SolverBase::get_counter (C++ func-

tion), 261
muSpectre::SolverBase::get_maxiter (C++ func-

tion), 261
muSpectre::SolverBase::get_name (C++ function),

261
muSpectre::SolverBase::get_tol (C++ function),

261
muSpectre::SolverBase::has_converged (C++

function), 261
muSpectre::SolverBase::initialise (C++ func-

tion), 261
muSpectre::SolverBase::maxiter (C++ member),

261
muSpectre::SolverBase::operator= (C++ func-

tion), 261
muSpectre::SolverBase::reset_counter (C++

function), 261
muSpectre::SolverBase::solve (C++ function), 261
muSpectre::SolverBase::SolverBase (C++ func-

tion), 260
muSpectre::SolverBase::tol (C++ member), 261
muSpectre::SolverBase::Vector_map (C++ type),

260
muSpectre::SolverBase::Vector_ref (C++ type),

260
muSpectre::SolverBase::Vector_t (C++ type), 260
muSpectre::SolverBase::verbose (C++ member),

261
muSpectre::SolverBiCGSTABEigen (C++ class), 262
muSpectre::SolverBiCGSTABEigen::get_name

(C++ function), 262
muSpectre::SolverCG (C++ class), 262
muSpectre::SolverCG::~SolverCG (C++ function),

262
muSpectre::SolverCG::Ap_k (C++ member), 263
muSpectre::SolverCG::ConstVector_ref (C++

type), 262
muSpectre::SolverCG::get_name (C++ function),

263
muSpectre::SolverCG::initialise (C++ function),

263

muSpectre::SolverCG::operator= (C++ function),
263

muSpectre::SolverCG::p_k (C++ member), 263
muSpectre::SolverCG::Parent (C++ type), 262
muSpectre::SolverCG::r_k (C++ member), 263
muSpectre::SolverCG::solve (C++ function), 263
muSpectre::SolverCG::SolverCG (C++ function),

262
muSpectre::SolverCG::Vector_map (C++ type), 262
muSpectre::SolverCG::Vector_ref (C++ type), 262
muSpectre::SolverCG::Vector_t (C++ type), 262
muSpectre::SolverCG::x_k (C++ member), 263
muSpectre::SolverCGEigen (C++ class), 263
muSpectre::SolverCGEigen::get_name (C++ func-

tion), 263
muSpectre::SolverDGMRESEigen (C++ class), 263
muSpectre::SolverDGMRESEigen::get_name (C++

function), 264
muSpectre::SolverEigen (C++ class), 264
muSpectre::SolverEigen::~SolverEigen (C++

function), 264
muSpectre::SolverEigen::adaptor (C++ member),

265
muSpectre::SolverEigen::ConstVector_ref

(C++ type), 264
muSpectre::SolverEigen::initialise (C++ func-

tion), 264
muSpectre::SolverEigen::operator= (C++ func-

tion), 264
muSpectre::SolverEigen::Parent (C++ type), 264
muSpectre::SolverEigen::result (C++ member),

265
muSpectre::SolverEigen::solve (C++ function),

265
muSpectre::SolverEigen::solver (C++ member),

265
muSpectre::SolverEigen::Solver (C++ type), 264
muSpectre::SolverEigen::SolverEigen (C++

function), 264
muSpectre::SolverEigen::Vector_map (C++ type),

264
muSpectre::SolverEigen::Vector_t (C++ type),

264
muSpectre::SolverError (C++ class), 265
muSpectre::SolverGMRESEigen (C++ class), 265
muSpectre::SolverGMRESEigen::get_name (C++

function), 265
muSpectre::SolverMINRESEigen (C++ class), 265
muSpectre::SolverMINRESEigen::get_name (C++

function), 265
muSpectre::SplitCell (C++ enum), 316
muSpectre::SplitCell::laminate (C++ enumera-

tor), 316
muSpectre::SplitCell::no (C++ enumerator), 316

442 Index

µSpectre Documentation, Release v0.1

muSpectre::SplitCell::simple (C++ enumerator),
316

muSpectre::STMaterialLinearElasticGeneric1
(C++ class), 276

muSpectre::STMaterialLinearElasticGeneric1::~STMaterialLinearElasticGeneric1
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::C
(C++ member), 277

muSpectre::STMaterialLinearElasticGeneric1::C_holder
(C++ member), 277

muSpectre::STMaterialLinearElasticGeneric1::CInput_t
(C++ type), 276

muSpectre::STMaterialLinearElasticGeneric1::evaluate_stress
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::evaluate_stress_tangent
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::F
(C++ member), 277

muSpectre::STMaterialLinearElasticGeneric1::F_holder
(C++ member), 277

muSpectre::STMaterialLinearElasticGeneric1::F_is_set
(C++ member), 278

muSpectre::STMaterialLinearElasticGeneric1::get_C
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::make_evaluator
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::Material_sptr
(C++ type), 276

muSpectre::STMaterialLinearElasticGeneric1::operator=
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::Parent
(C++ type), 276

muSpectre::STMaterialLinearElasticGeneric1::set_F
(C++ function), 277

muSpectre::STMaterialLinearElasticGeneric1::Stiffness_t
(C++ type), 276

muSpectre::STMaterialLinearElasticGeneric1::STMaterialLinearElasticGeneric1
(C++ function), 276, 277

muSpectre::STMaterialLinearElasticGeneric1::Strain_t
(C++ type), 276

muSpectre::STMaterialLinearElasticGeneric1::Stress_t
(C++ type), 276

muSpectre::STMaterialLinearElasticGeneric1::traits
(C++ type), 276

muSpectre::StrainMeasure (C++ enum), 317
muSpectre::StrainMeasure::Almansi (C++ enu-

merator), 318
muSpectre::StrainMeasure::Biot (C++ enumera-

tor), 318
muSpectre::StrainMeasure::Gradient (C++ enu-

merator), 317
muSpectre::StrainMeasure::GreenLagrange

(C++ enumerator), 318
muSpectre::StrainMeasure::Infinitesimal

(C++ enumerator), 317
muSpectre::StrainMeasure::LCauchyGreen (C++

enumerator), 318
muSpectre::StrainMeasure::Log (C++ enumera-

tor), 318
muSpectre::StrainMeasure::no_strain_ (C++

enumerator), 318
muSpectre::StrainMeasure::RCauchyGreen (C++

enumerator), 318
muSpectre::StressMeasure (C++ enum), 317
muSpectre::StressMeasure::Biot (C++ enumera-

tor), 317
muSpectre::StressMeasure::Cauchy (C++ enumer-

ator), 317
muSpectre::StressMeasure::Kirchhoff (C++ enu-

merator), 317
muSpectre::StressMeasure::Mandel (C++ enumer-

ator), 317
muSpectre::StressMeasure::no_stress_ (C++

enumerator), 317
muSpectre::StressMeasure::PK1 (C++ enumera-

tor), 317
muSpectre::StressMeasure::PK2 (C++ enumera-

tor), 317
muSpectre::Vectors_t (C++ class), 287
muSpectre::Vectors_t::at (C++ function), 287
muSpectre::Vectors_t::begin (C++ function), 288
muSpectre::Vectors_t::data (C++ member), 288
muSpectre::Vectors_t::dim (C++ member), 288
muSpectre::Vectors_t::end (C++ function), 288
muSpectre::Vectors_t::get_a_vector (C++ func-

tion), 288
muSpectre::Vectors_t::get_dim (C++ function),

288
muSpectre::Vectors_t::iterator (C++ class), 163
muSpectre::Vectors_t::iterator::~iterator

(C++ function), 164
muSpectre::Vectors_t::iterator::dim (C++

member), 164
muSpectre::Vectors_t::iterator::index (C++

member), 164
muSpectre::Vectors_t::iterator::iterator

(C++ function), 164
muSpectre::Vectors_t::iterator::operator!=

(C++ function), 164
muSpectre::Vectors_t::iterator::operator*

(C++ function), 164
muSpectre::Vectors_t::iterator::operator++

(C++ function), 164
muSpectre::Vectors_t::iterator::operator==

(C++ function), 164
muSpectre::Vectors_t::iterator::operator--

(C++ function), 164
muSpectre::Vectors_t::iterator::value_type

Index 443

µSpectre Documentation, Release v0.1

(C++ type), 163
muSpectre::Vectors_t::iterator::value_type_const

(C++ type), 163
muSpectre::Vectors_t::iterator::vectors

(C++ member), 164
muSpectre::Vectors_t::operator[] (C++ func-

tion), 287
muSpectre::Vectors_t::push_back (C++ function),

288
muSpectre::Vectors_t::size (C++ function), 288
muSpectre::Vectors_t::Vector_t (C++ type), 288
muSpectre::Vectors_t::Vectors_t (C++ function),

287
muSpectre::VoigtConversion (C++ class), 288
muSpectre::VoigtConversion::factors (C++

member), 291
muSpectre::VoigtConversion::fourth_to_voigt

(C++ function), 289
muSpectre::VoigtConversion::get_factors

(C++ function), 289, 290
muSpectre::VoigtConversion::get_mat (C++

function), 289, 290
muSpectre::VoigtConversion::get_sym_mat

(C++ function), 288, 290
muSpectre::VoigtConversion::get_vec (C++

function), 289, 290
muSpectre::VoigtConversion::get_vec_vec

(C++ function), 289, 290
muSpectre::VoigtConversion::gradient_to_voigt_GreenLagrange_strain

(C++ function), 290
muSpectre::VoigtConversion::gradient_to_voigt_strain

(C++ function), 290
muSpectre::VoigtConversion::mat (C++ member),

291
muSpectre::VoigtConversion::second_to_voigt

(C++ function), 289
muSpectre::VoigtConversion::stress_from_voigt

(C++ function), 290
muSpectre::VoigtConversion::sym_mat (C++

member), 291
muSpectre::VoigtConversion::vec (C++ member),

291
muSpectre::VoigtConversion::vec_vec (C++

member), 291
muSpectre::VoigtConversion::VoigtConversion

(C++ function), 288
muSpectre::vsize (C++ function), 321

R
Rcoord_t (C++ type), 84, 391

S
std_replacement (C++ type), 324
std_replacement::apply (C++ function), 324

std_replacement::detail (C++ type), 324
std_replacement::detail::apply_impl (C++

function), 325
std_replacement::detail::INVOKE (C++ function),

324, 325
std_replacement::detail::is_reference_wrapper

(C++ struct), 153
std_replacement::detail::is_reference_wrapper<std::reference_wrapper<U>>

(C++ struct), 153
std_replacement::invoke (C++ function), 324

444 Index

	Summary
	Tutorials
	Getting Started
	Obtaining µSpectre
	Building µSpectre
	Running µSpectre
	Getting help
	Reporting Bugs
	Contribute

	Writing a New Constitutive Law
	The muSpectre::MaterialMuSpectre class
	Implementing the new material

	Coding Convention
	Objectives of the Convention
	Structure
	Documentation
	Testing
	C++ Coding Style and Convention
	Header Files
	Self-contained Headers
	The #define Guard
	Forward Declarations
	Inline Functions
	Names and Order of Includes

	Scoping
	Namespaces
	Unnamed Namespaces and Static Variables
	Nonmember, Static Member, and Global Functions
	Local Variables
	Static and Global Variables
	thread_local Variables

	Classes
	Doing Work in Constructors
	Implicit Conversions
	Copyable and Movable Types
	Structs vs. Classes
	Inheritance
	Multiple Inheritance
	Interfaces
	Operator Overloading
	Access Control
	Declaration Order

	Functions
	Output Parameters
	Write Short Functions
	Reference Arguments
	Function Overloading
	Default Arguments
	Trailing Return Type Syntax

	Ownership and linting
	Ownership and Smart Pointers
	cpplint

	Other C++ Features
	Rvalue References
	Friends
	Exceptions
	noexcept
	Run-Time Type Information (RTTI)
	Casting
	Streams
	Preincrement and Predecrement
	Use of const
	Use of constexpr
	Integer Types
	Preprocessor Macros
	0 and nullptr/NULL
	sizeof
	auto
	Braced Initialiser List
	Lambda expressions
	Template metaprogramming
	Boost
	C++14
	Nonstandard Extensions
	Aliases

	Naming
	General Naming Rules
	File Names
	Type Names
	Variable Names
	struct and class Data Members

	constexpr and const Names
	Function Names
	Namespace Names
	Enumerator Names
	Macro Names
	Exceptions to Naming Rules

	Comments
	Comment Style
	File Comments
	Class Comments
	Function Comments
	Function Declarations
	Function Definitions

	Variable Comments
	Class Data Members
	Global Variables

	Implementation Comments
	Line Comments

	Punctuation, Spelling and Grammar
	TODO Comments
	Deprecation Comments

	Formatting
	Line Length
	Non-ASCII Characters
	Spaces vs. Tabs
	Function Declarations and Definitions
	Lambda Expressions
	Function Calls
	Braced Initialiser List Format
	Conditionals
	Loops and Switch Statements
	Pointer and Reference Expressions
	Boolean Expressions
	Return Values
	Variable and Array Initialisation
	Preprocessor Directives
	Class Format
	Constructor Initialiser Lists
	Namespace Formatting
	Horizontal Whitespace
	General
	Loops and Conditionals
	Operators
	Templates and Casts

	Vertical Whitespace

	Exceptions to the Rules
	Existing Non-conformant Code
	Windows Code

	Parting Words

	Python Coding Style
	References

	Organisation of the Code
	µGrid
	Common Type Aliases
	Field Data Types
	Basic µGrid Field Concepts
	Fields
	Example: Using fields as global arrays:

	Field Maps
	Example 1: Iterating over fields and do math on the iterates:

	Field Collections
	Fields
	Example: Using fields as global arrays:

	Field Maps
	Example 1: Iterating over fields and do math on the iterates:

	Field Collections

	State or History Variables
	Mapped Fields

	Constitutive Laws
	Generic Linear Elastic Material
	Python Usage Example

	CellSplit
	Python Usage Example

	Laminate Material
	Python Usage Example

	Testing Constitutive Laws
	Python Usage Example
	C++ Usage Example

	Reference
	LICENSE

	License
	GNU LESSER GENERAL PUBLIC LICENSE
	0. Additional Definitions.
	1. Exception to Section 3 of the GNU GPL.
	2. Conveying Modified Versions.
	3. Object Code Incorporating Material from Library Header Files.
	4. Combined Works.
	5. Combined Libraries.
	6. Revised Versions of the GNU Lesser General Public License.

	GNU GENERAL PUBLIC LICENSE
	0. Definitions.
	1. Source Code.
	2. Basic Permissions.
	3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
	4. Conveying Verbatim Copies.
	5. Conveying Modified Source Versions.
	6. Conveying Non-Source Forms.
	7. Additional Terms.
	8. Termination.
	9. Acceptance Not Required for Having Copies.
	10. Automatic Licensing of Downstream Recipients.
	11. Patents.
	12. No Surrender of Others’ Freedom.
	13. Use with the GNU Affero General Public License.
	14. Revised Versions of this License.
	15. Disclaimer of Warranty.
	16. Limitation of Liability.
	17. Interpretation of Sections 15 and 16.

	Indices and tables
	Index

